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Ray Tracing

Ray Tracing 1

Basic algorithm

Overview of pbrt

Ray-surface intersection (triangles, …)

Ray Tracing 2

Problem: brute force = |Image| x |Objects|

Acceleration data structures
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Ray Tracing Acceleration Techniques

1N

Faster 
Intersection

Fewer 
Rays

Generalized 
Rays

Approaches

Tighter bounds
Faster intersector

Uniform grids
Spatial hierarchies

k-d, oct-tree, bsp
hierarchical grids

Hierarchical 
bounding
volumes (HBV)

Early ray 
termination

Adaptive 
sampling

Beam tracing
Cone tracing
Pencil tracing
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Primitives

pbrt primitive base class

Shape

Material reflection and emission

Primitives

Primitive instance
Transformation and pointer to basic primitive

Aggregate (collection)
Treat collections just like basic primitives

Incorporate acceleration structures into collections

May nest accelerators of different types

Types: grid.cpp and kdtree.cpp
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Uniform Grids

Preprocess scene

1. Find bounding box
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Uniform Grids

Preprocess scene

1. Find bounding box

2. Determine resolution

v x y z on n n n n= ∝
3max( , , )x y z on n n d n=
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Uniform Grids

Preprocess scene

1. Find bounding box

2. Determine resolution

2. Place object in cell,

if object overlaps cell

3max( , , )x y z on n n d n=
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Uniform Grids

Preprocess scene

1. Find bounding box

2. Determine resolution

3. Place object in cell,

if object overlaps cell

4. Check that object

intersects cell

3max( , , )x y z on n n d n=
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Uniform Grids

Preprocess scene

Traverse grid

3D line – 3D-DDA

6-connected line

Section 4.3
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Caveat: Overlap

Problem: Don’t output first intersection found!

Problem: Redundant intersection tests

Solution: Mailboxes

Assign each ray an increasing number

Primitive intersection cache (mailbox)
Store last ray number tested in mailbox

Only intersect if ray number is greater
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Spatial Hierarchies

A

A

Letters correspond to planes (A)
Point Location by recursive search
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Spatial Hierarchies

B

A

B

A

Letters correspond to planes (A, B)
Point Location by recursive search
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Spatial Hierarchies

CB

D

C

D

A

B

A

Letters correspond to planes (A, B, C, D)
Point Location by recursive search
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Variations

oct-treekd-tree bsp-tree
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Ray Traversal Algorithms

Recursive inorder traversal 

[Kaplan, Arvo, Jansen]

mint

maxt *t

max *t t<

*t

min max*t t t< <

*t

min*t t<

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)Intersect(L,tmin,t*)
Intersect(R,t*,tmax)

= −* ( [ ]) / [ ]t S a aO D
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Build Hierarchy Top-Down

Methods to choose axis and splitting plane
• Midpoint
• Median cut (balanced)
• Surface area heuristic

?
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Cost 

What is the cost of tracing a ray through a 
node?

Cost(node) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

C_trav = cost of traversing a cell

Cost(L) = cost of traversing left child

Cost(R) =  cost of traversing right child
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Splitting with Cost in Mind

From Gordon Stoll 

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Split in the Middle = Bad!

Makes the L & R probabilities equal

Pays no attention to the L & R costs

From Gordon Stoll 
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Split at the Median = Bad!

Makes the L & R costs equal

Pays no attention to the L & R probabilities

From Gordon Stoll 
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Cost-Optimized Split = Good!

Automatically and rapidly isolates complexity

Produces large chunks of empty space

From Gordon Stoll 
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Cost

Need the probabilities
Turns out to be proportional to surface area

Need the child cell costs

Triangle count is a good approximation

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

= C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)

C_trav is the ratio of the cost to traverse to the cost to intersect

C_trav = 1:80 in pbrt

C_trav = 1:1.5 in a highly optimized version
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Surface Area and Rays

Number of rays in a given direction that hit an
object is proportional to its projected area

The total number of rays hitting an object is
Crofton’s Theorem:

For a convex body

For a sphere               and

4

S
A =

4 Aπ

24S rπ=

A

2A A rπ= =
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Surface Area and Rays

The probability of a ray hitting a convex shape 

enclosed by another convex shape is

Pr[ ] o
o c

c

S
r S r S

S
∩ ∩ =

oScS
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Basic Build Algorithm (Triangles)

1. Pick an axis, or optimize across all three

2. Build a set of “candidate” split locations

Note: Cost extrema must be at bbox vertices

Vertices of triangle

Vertices of triangle clipped to node bbox

3. Sort or bin the triangles

4. Sweep to incrementaly track L/R counts, cost

5. Output position of minimum cost split

Running time: ( ) log 2 ( / 2)T N N N T N= +
2( ) logT N N N=
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Sweep Build Algorithm

a
a

Sp
S

= b
b

Sp
S

=

2n splits

a b

aN bN
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Termination Criteria

When should we stop splitting?

Bad: depth limit, number of triangles
Good: When split does not lower the cost

Threshold of cost improvement

Stretch over multiple levels

For example, if cost doesn’t go down after 
three splits in a row, terminate

Threshold of cell size

Absolute probability SA(node)/SA(scene) 
small
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Best Reported Timings

Reshetov, Soupikov, Hurley, SIGGRAPH 2005

Millions of Rays per Second
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Superoptimizations

Lots of optimizations
Carefully written inner loop (no recursion)
Use vector instructions SSE2
64 bits per kd-tree node

32 bit position
32 bit pointer to pair of child nodes
2 bits for split plane direction (x, y, or z)

Trace packet of rays
4 or more rays at a time

Intersect beam at top of tree
Encourage empty nodes
Special case axis-aligned triangles
…
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Ray Tracing Hardware

Custom designed chips

AR250/350 ray tracing processor
www.art-render.com

SaarCOR

RPU

Ray tracing on programmable GPUs
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Comparison

V. Havran, Best Efficiency Scheme Project
http://sgi.felk.cvut.cz/BES/

Spheres Rings Tree

Uniform Grid d=1 244 129 1517
d=20 38 83 781

Hierarchical Grid 34 116 34

Time
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Comparison

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Theoretical Nugget 1

Computational geometry of ray shooting

1. Triangles (Pellegrini)

Time:

Space:

2. Sphere (Guibas and Pellegrini)

Time:

Space:

(log )O n

2(log )O n

5( )O n ε+

5( )O n ε+
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Theoretical Nugget 2

Optical computer = Turing machine

Reif, Tygar, Yoshida

Determining if a ray 

starting at y0 arrives 

at yn is undecidable

y = y+1

y = -2*y

if( y>0 )


