
Page 1

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Ray Tracing

Ray Tracing 1

Basic algorithm

Overview of pbrt

Ray-surface intersection (triangles, …)

Ray Tracing 2

Problem: brute force = |Image| x |Objects|

Acceleration data structures

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Ray Tracing Acceleration Techniques

1N

Faster
Intersection

Fewer
Rays

Generalized
Rays

Approaches

Tighter bounds
Faster intersector

Uniform grids
Spatial hierarchies

k-d, oct-tree, bsp
hierarchical grids

Hierarchical
bounding
volumes (HBV)

Early ray
termination

Adaptive
sampling

Beam tracing
Cone tracing
Pencil tracing

Page 2

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Primitives

pbrt primitive base class

Shape

Material reflection and emission

Primitives

Primitive instance
Transformation and pointer to basic primitive

Aggregate (collection)
Treat collections just like basic primitives

Incorporate acceleration structures into collections

May nest accelerators of different types

Types: grid.cpp and kdtree.cpp

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Uniform Grids

Preprocess scene

1. Find bounding box

Page 3

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Uniform Grids

Preprocess scene

1. Find bounding box

2. Determine resolution

v x y z on n n n n= ∝
3max(, ,)x y z on n n d n=

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Uniform Grids

Preprocess scene

1. Find bounding box

2. Determine resolution

2. Place object in cell,

if object overlaps cell

3max(, ,)x y z on n n d n=

Page 4

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Uniform Grids

Preprocess scene

1. Find bounding box

2. Determine resolution

3. Place object in cell,

if object overlaps cell

4. Check that object

intersects cell

3max(, ,)x y z on n n d n=

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Uniform Grids

Preprocess scene

Traverse grid

3D line – 3D-DDA

6-connected line

Section 4.3

Page 5

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Caveat: Overlap

Problem: Don’t output first intersection found!

Problem: Redundant intersection tests

Solution: Mailboxes

Assign each ray an increasing number

Primitive intersection cache (mailbox)
Store last ray number tested in mailbox

Only intersect if ray number is greater

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Spatial Hierarchies

A

A

Letters correspond to planes (A)
Point Location by recursive search

Page 6

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Spatial Hierarchies

B

A

B

A

Letters correspond to planes (A, B)
Point Location by recursive search

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Spatial Hierarchies

CB

D

C

D

A

B

A

Letters correspond to planes (A, B, C, D)
Point Location by recursive search

Page 7

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Variations

oct-treekd-tree bsp-tree

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Ray Traversal Algorithms

Recursive inorder traversal

[Kaplan, Arvo, Jansen]

mint

maxt *t

max *t t<

*t

min max*t t t< <

*t

min*t t<

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)Intersect(L,tmin,t*)
Intersect(R,t*,tmax)

= −* ([]) / []t S a aO D

Page 8

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Build Hierarchy Top-Down

Methods to choose axis and splitting plane
• Midpoint
• Median cut (balanced)
• Surface area heuristic

?

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Cost

What is the cost of tracing a ray through a
node?

Cost(node) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

C_trav = cost of traversing a cell

Cost(L) = cost of traversing left child

Cost(R) = cost of traversing right child

Page 9

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Splitting with Cost in Mind

From Gordon Stoll

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Split in the Middle = Bad!

Makes the L & R probabilities equal

Pays no attention to the L & R costs

From Gordon Stoll

Page 10

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Split at the Median = Bad!

Makes the L & R costs equal

Pays no attention to the L & R probabilities

From Gordon Stoll

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Cost-Optimized Split = Good!

Automatically and rapidly isolates complexity

Produces large chunks of empty space

From Gordon Stoll

Page 11

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Cost

Need the probabilities
Turns out to be proportional to surface area

Need the child cell costs

Triangle count is a good approximation

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

= C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)

C_trav is the ratio of the cost to traverse to the cost to intersect

C_trav = 1:80 in pbrt

C_trav = 1:1.5 in a highly optimized version

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Surface Area and Rays

Number of rays in a given direction that hit an
object is proportional to its projected area

The total number of rays hitting an object is
Crofton’s Theorem:

For a convex body

For a sphere and

4

S
A =

4 Aπ

24S rπ=

A

2A A rπ= =

Page 12

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Surface Area and Rays

The probability of a ray hitting a convex shape

enclosed by another convex shape is

Pr[] o
o c

c

S
r S r S

S
∩ ∩ =

oScS

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Basic Build Algorithm (Triangles)

1. Pick an axis, or optimize across all three

2. Build a set of “candidate” split locations

Note: Cost extrema must be at bbox vertices

Vertices of triangle

Vertices of triangle clipped to node bbox

3. Sort or bin the triangles

4. Sweep to incrementaly track L/R counts, cost

5. Output position of minimum cost split

Running time: () log 2 (/ 2)T N N N T N= +
2() logT N N N=

Page 13

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Sweep Build Algorithm

a
a

Sp
S

= b
b

Sp
S

=

2n splits

a b

aN bN

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Termination Criteria

When should we stop splitting?

Bad: depth limit, number of triangles
Good: When split does not lower the cost

Threshold of cost improvement

Stretch over multiple levels

For example, if cost doesn’t go down after
three splits in a row, terminate

Threshold of cell size

Absolute probability SA(node)/SA(scene)
small

Page 14

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Best Reported Timings

Reshetov, Soupikov, Hurley, SIGGRAPH 2005

Millions of Rays per Second

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Superoptimizations

Lots of optimizations
Carefully written inner loop (no recursion)
Use vector instructions SSE2
64 bits per kd-tree node

32 bit position
32 bit pointer to pair of child nodes
2 bits for split plane direction (x, y, or z)

Trace packet of rays
4 or more rays at a time

Intersect beam at top of tree
Encourage empty nodes
Special case axis-aligned triangles
…

Page 15

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Ray Tracing Hardware

Custom designed chips

AR250/350 ray tracing processor
www.art-render.com

SaarCOR

RPU

Ray tracing on programmable GPUs

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Comparison

V. Havran, Best Efficiency Scheme Project
http://sgi.felk.cvut.cz/BES/

Spheres Rings Tree

Uniform Grid d=1 244 129 1517
d=20 38 83 781

Hierarchical Grid 34 116 34

Time

Page 16

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Comparison

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Theoretical Nugget 1

Computational geometry of ray shooting

1. Triangles (Pellegrini)

Time:

Space:

2. Sphere (Guibas and Pellegrini)

Time:

Space:

(log)O n

2(log)O n

5()O n ε+

5()O n ε+

Page 17

CS348B Lecture 3 Pat Hanrahan, Spring 2006

Theoretical Nugget 2

Optical computer = Turing machine

Reif, Tygar, Yoshida

Determining if a ray

starting at y0 arrives

at yn is undecidable

y = y+1

y = -2*y

if(y>0)

