Overview

Earlier lecture

- Monte Carlo integration

Today

- Variance reduction
- Importance sampling
- Stratified sampling
- Multidimensional sampling patterns
- Discrepancy and Quasi-Monte Carlo

Next lecture

- Signal processing view of sampling

Cameras (5D integral)

$$
R=\iiint \int_{\Omega} \iint_{A} L(x, \omega, t) P(x) S(t) \cos \theta d A d \omega d t
$$

Cook, Porter, Carpenter, 1984

Variance

1 shadow ray per eye ray
16 shadow rays per eye ray

Variance

Definition

$$
\begin{aligned}
V[Y] & \equiv E\left[(Y-E[Y])^{2}\right] \\
& =E\left[Y^{2}\right]-E[Y]^{2}
\end{aligned}
$$

Variance decreases linearly with sample size

$$
V\left[\frac{1}{N} \sum_{i=1}^{N} Y_{i}\right]=\frac{1}{N^{2}} \sum_{i=1}^{N} V\left[Y_{i}\right]=\frac{1}{N^{2}} N V[Y]=\frac{1}{N} V[Y]
$$

Variance Reduction

Efficiency measure

$$
\text { Efficiency } \propto \frac{1}{\text { Variance } \bullet \text { Cost }}
$$

If one technique has twice the variance as another technique, then it takes twice as many samples to achieve the same variance
If one technique has twice the cost of another technique with the same variance, then it takes twice as much time to achieve the same variance
Techniques to increase efficiency

- Importance sampling
- Stratified sampling

Biasing

Previously used a uniform probability distribution

Can use another probability distribution

$$
X_{i} \sim p(x)
$$

But must change the estimator

$$
Y_{i}=\frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}
$$

Unbiased Estimate

Probability $\quad X_{i} \sim p(x)$
Estimator $\quad Y_{i}=\frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}$

Proof

$$
\begin{aligned}
E\left[Y_{i}\right] & =E\left[\frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}\right] \\
& =\int\left[\frac{f(x)}{p(x)}\right] p(x) d x \\
& =\int f(x) d x
\end{aligned}
$$

Importance Sampling

Sample according to f

$$
\begin{aligned}
\tilde{p}(x) & =\frac{f(x)}{E[f]} \\
\tilde{f}(x) & =\frac{f(x)}{\tilde{p}(x)}
\end{aligned}
$$

$$
E\left[\tilde{f}^{2}\right]=\int\left[\frac{f(x)}{\tilde{p}(x)}\right]^{2} \tilde{p}(x) d x
$$

Variance

$$
=\int\left[\frac{f(x)}{f(x) / E[f]}\right]^{2} \frac{f(x)}{E[f]} d x
$$

$$
V[f]=E\left[f^{2}\right]-E^{2}[f]
$$

$$
=E[f] \int f(x) d x
$$

Zero variance!

$$
=E^{2}[f]
$$

$$
V\left[\tilde{f}^{2}\right]=0
$$

Gotcha?

Examples

Projected solid angle
4 eye rays per pixel 100 shadow rays

Area
4 eye rays per pixel 100 shadow rays

Pat Hanrahan, Spring 2006

Stratified Sampling

Allocate samples per region
Estimate each region separately

$$
F_{N}=\frac{1}{N} \sum_{i=1}^{N} F_{i}
$$

New variance

$$
V\left[F_{N}\right]=\frac{1}{N^{2}} \sum_{i=1}^{N} V\left[F_{i}\right]
$$

Stratified Sampling

Sample a polygon

$$
V\left[F_{N}\right]=\frac{1}{N^{2}} \sum_{i=1}^{\sqrt{N}} V\left[F_{j}\right]=\frac{V\left[F_{E}\right]}{N^{1.5}}
$$

If the variance in each region is less than the overall variance, there will be a reduction in overall variance

Sampling a Circle

Equi-Areal

$$
\begin{aligned}
& \theta=2 \pi U_{1} \\
& r=\sqrt{U_{2}}
\end{aligned}
$$

Shirley's Mapping

High-dimensional Sampling

Complete set of samples $N=\underbrace{n \times n \times \ldots \times n}_{d}=n^{d}$
Random sampling
Error ... $E \sim V^{1 / 2} \sim \frac{1}{N^{1 / 2}}$
Numerical integration
Error ... $E \sim \frac{1}{n}=\frac{1}{N^{1 / d}}$
Monte Carlo requires fewer samples for the same error in high dimensional space

Space-time Patterns

6	10	2	13
3	14	12	8
15	0	7	11
5	9	4	1

Cook Pattern

15	8	5	2
4	3	14	9
10	13	0	7
1	6	11	12

Pan-diagonal Magic Square

Page 8

Path Tracing

4 eye rays per pixel
16 shadow rays per eye ray
Complete
CS348B Lecture 8

64 eye rays per pixel 1 shadow ray per eye ray

Block Design

Latin Square

a	d	c	b
b	a	d	c
c	b	a	d
d	c	b	a

Alphabet of size n
Each symbol appears exactly once in each row and column

Rows and columns are stratified

Block Design

N-Rook Pattern

Incomplete block design
Replaced $\boldsymbol{n}^{\mathbf{2}}$ samples with \boldsymbol{n} samples
Permutations: $\left(\pi_{1}(i), \pi_{2}(i), \cdots \pi_{d}(i)\right)$
Generalizations: N-queens, 2D projection

$$
\left(\pi_{x}=\{1,2,3,4\}, \pi_{y}=\{4,2,3,1\}\right)
$$

Discrepancy

$$
\begin{aligned}
& D_{N}=\max _{x, y}|\Delta(x, y)|
\end{aligned}
$$

Theorem on Total Variation

Theorem:

$$
\left|\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)-\int f(x) d x\right| \leq V(f) D_{N}
$$

Proof: Integrate by parts

$$
\begin{aligned}
& \int f(x)\left[\frac{\delta\left(x-x_{i}\right)}{N}-1\right] d x \quad \frac{\partial \Delta(x)}{\partial x}=\frac{\delta\left(x-x_{i}\right)}{N}-1 \\
& =\int f(x) \frac{\partial \Delta(x)}{\partial x} d x \\
& =\left.f \Delta\right|_{0} ^{1}-\int \frac{\partial f(x)}{\partial x} \Delta(x) d x=-\int \frac{\partial f(x)}{\partial x} \Delta(x) d x \\
& \leq D_{N} \int\left|\frac{\partial f(x)}{\partial x}\right| d x=V(f) D_{N}
\end{aligned}
$$

Quasi-Monte Carlo Patterns

Radical inverse (digit reverse)
of integer i in integer base b

$$
\begin{aligned}
& i=d_{i} \cdots d_{2} d_{1} d_{0} \\
& \phi_{b}(i) \equiv 0 . d_{0} d_{1} d_{2} \cdots d_{i}
\end{aligned}
$$

Hammersley points

$$
\left(i / N, \phi_{2}(i), \phi_{3}(i), \phi_{5}(i), \cdots\right)
$$

Halton points (sequential)

1	1	.1	$1 / 2$
2	10	.01	$1 / 4$
3	11	.11	$3 / 4$
4	100	.001	$3 / 8$
5	101	.101	$5 / 8$

$$
\left(\phi_{2}(i), \phi_{3}(i), \phi_{5}(i), \cdots\right) \quad D_{N}=O\left(\frac{\log ^{d} N}{N}\right)
$$

Hammersly Points

$$
\left(i / N, \phi_{2}(i), \phi_{3}(i), \phi_{5}(i), \cdots\right)
$$

Edge Discrepancy

Note: SGI IR Multisampling extension: $\mathbf{8 x 8}$ subpixel grid; 1,2,4,8 samples

Low-Discrepancy Patterns

Process	16 points	256 points	1600 points
Zaremba	0.0504	0.00478	0.00111
Jittered	0.0538	0.00595	0.00146
Poisson-Disk	0.0613	0.00767	0.00241
N-Rooks	0.0637	0.0123	0.00488
Random	0.0924	0.0224	0.00866

Discrepancy of random edges, From Mitchell (1992)
Random sampling converges as $\mathrm{N}^{-1 / 2}$
Zaremba converges faster and has lower discrepancy
Zaremba has a relatively poor blue noise spectra
Jittered and Poisson-Disk recommended

Views of Integration

1. Numerical

- Quadrature/Integration rules
- Smooth functions

2. Statistical sampling (Monte Carlo)

- Sampling like polling
- Variance reduction techniques
- High dimensional sampling: $1 / \mathbf{N}^{1 / 2}$

3. Quasi Monte Carlo

- Discrepancy
- Asymptotic efficiency in high dimensions

4. Signal processing

- Sampling and reconstruction
- Aliasing and antialiasing
- Blue noise good

