Sampling and Reconstruction

The sampling and reconstruction process

■ Real world: continuous

■ Digital world: discrete

Basic signal processing

- **■** Fourier transforms
- The convolution theorem
- The sampling theorem

Aliasing and antialiasing

- Uniform supersampling
- Nonuniform supersampling

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Camera Simulation

$$R = \iiint\limits_{A \Omega T \Lambda} P(x', \lambda) S(x', \omega', t) L(T(x', \omega', \lambda), t, \lambda) \ d\vec{A}(x') \bullet d\vec{\omega}' \ dt \ d\lambda$$

Sensor response $P(x',\lambda)$

Lens $(x,\omega) = T(x',\omega',\lambda)$

Shutter $S(x', \omega', t)$

Scene radiance $L(x, \omega, t, \lambda)$

CS348B Lecture 9

Imagers = Signal Sampling

All imagers convert a continuous image to a discrete sampled image by integrating over the active "area" of a sensor.

$$R = \iiint_{T} \iint_{\Omega} L(x, \omega, t) P(x) S(t) \cos \theta \, dA \, d\omega \, dt$$

Examples:

- Retina: photoreceptors
- CCD array

Virtual CG cameras do not integrate, they simply sample radiance along rays ...

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Displays = Signal Reconstruction

All physical displays recreate a continuous image from a discrete sampled image by using a finite sized source of light for each pixel.

Examples:

- DACs: sample and hold
- Cathode ray tube: phosphor spot and grid

CS348B Lecture 9

Sampling in Computer Graphics

Artifacts due to sampling - Aliasing

- Jaggies
- Moire
- Flickering small objects
- Sparkling highlights
- Temporal strobing

Preventing these artifacts - Antialiasing

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Jaggies

Retort sequence by Don Mitchell

Staircase pattern or jaggies

CS348B Lecture 9

Basic Signal Processing

Fourier Transforms

Spectral representation treats the function as a weighted sum of sines and cosines

Each function has two representations

- Spatial domain normal representation
- Frequency domain spectral representation

The Fourier transform converts between the spatial and frequency domain

Spatial and Frequency Domain

Spatial Domain

CS348B Lecture 9

Pat Hanrahan, Spring 2006

More Examples

Spatial Domain

Frequency Domain

CS348B Lecture 9

More Examples

Spatial Domain

CS348B Lecture 9

Pat Hanrahan, Spring 2006

More Examples

Spatial Domain

Frequency Domain

Pat's Frequencies

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Marc's Frequencies

Convolution

Definition

$$h(x) = f \otimes g = \int f(x')g(x - x') dx'$$

Convolution Theorem: Multiplication in the frequency domain is equivalent to convolution in the space domain.

$$f \otimes g \leftrightarrow F \times G$$

Symmetric Theorem: Multiplication in the space domain is equivalent to convolution in the frequency domain.

$$f \times g \longleftrightarrow F \otimes G$$

CS348B Lecture 9

Pat Hanrahan, Spring 2006

The Sampling Theorem

Sampling: Spatial Domain

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Sampling: Frequency Domain

$$F(\omega)$$

$$\otimes =$$

$$\iiint_{1/T}(\omega) = \sum_{n=-\infty}^{\infty} \delta(\omega - n/T)$$

CS348B Lecture 9

Reconstruction: Frequency Domain

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Reconstruction: Spatial Domain

CS348B Lecture 9

Sampling and Reconstruction

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Sampling Theorem

This result if known as the Sampling Theorem and is due to Claude Shannon who first discovered it in 1949

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above 1/2 the Sampling frequency

For a given bandlimited function, the rate at which it must be sampled is called the *Nyquist Frequency*

Aliasing

Undersampling: Aliasing

Sampling a "Zone Plate"

Ideal Reconstruction

Ideally, use a perfect low-pass filter - the sinc function - to bandlimit the sampled signal and thus remove all copies of the spectra introduced by sampling

Unfortunately,

- The sinc has infinite extent and we must use simpler filters with finite extents. Physical processes in particular do not reconstruct with sincs
- The sinc may introduce ringing which are perceptually objectionable

Sampling a "Zone Plate"

Zone plate: $\sin x^2 + y^2$

Sampled at 128x128
Reconstructed to 512x512
Using optimal cubic

Left rings: part of signal Right rings: prealiasing Middle rings: postaliasing

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Mitchell Cubic Filter

$$h(x) = \frac{1}{6} \begin{cases} (12 - 9B - 6C)x^3 + (-18 + 12B + 6C)x^2 + (6 - 2B) & |x| < 1\\ (-B - 6C)x^3 + (6B + 30C)x^2 + (-12B - 48C)x + (8B + 24C) & 1 < |x| < 2\\ 0 & otherwise \end{cases}$$

Properties:

$$\sum_{n=-\infty}^{n=\infty} h(x) = 1$$

B-spline: (1,0)

Catmull-Rom: (0,1/2)

From Mitchell and Netravali

Aliasing

- Prealiasing: due to sampling under Nyquist rate
- Postaliasing: due to use of imperfect reconstruction filter

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Antialiasing

Antialiasing

Antialiasing = Preventing aliasing

- 1. Analytically prefilter the signal
 - Solvable for points, lines and polygons
 - Not solvable in generale.g. procedurally defined images
- 2. Uniform supersampling and resample
- 3. Nonuniform or stochastic sampling

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Antialiasing by Prefiltering

Frequency Space

Uniform Supersampling

Increasing the sampling rate moves each copy of the spectra further apart, potentially reducing the overlap and thus aliasing

Resulting samples must be resampled (filtered) to image sampling rate

$$Pixel = \sum_{s} w_{s} \cdot Sample_{s}$$

Samples

Pixel

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Point vs. Supersampled

Checkerboard sequence by Tom Duff

CS348B Lecture 9

Analytic vs. Supersampled

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Distribution of Extrafoveal Cones

Monkey eye cone distribution

Fourier transform

Yellot theory

- Aliases replaced by noise
- Visual system less sensitive to high freq noise

CS348B Lecture 9

Non-uniform Sampling

Intuition

Uniform sampling

- The spectrum of uniformly spaced samples is also a set of uniformly spaced spikes
- Multiplying the signal by the sampling pattern corresponds to placing a copy of the spectrum at each spike (in freq. space)
- Aliases are coherent, and very noticable

Non-uniform sampling

- Samples at non-uniform locations have a different spectrum; a single spike plus noise
- Sampling a signal in this way converts aliases into broadband noise
- Noise is incoherent, and much less objectionable

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Jittered Sampling

Add uniform random jitter to each sample

0	0
0	0

Jittered vs. Uniform Supersampling

4x4 Jittered Sampling

4x4 Uniform

CS348B Lecture 9

Pat Hanrahan, Spring 2006

Analysis of Jitter

Non-uniform sampling

$$s(x) = \sum_{n=-\infty}^{n=\infty} \delta(x - x_n)$$
$$x_n = nT + j_n$$

Jittered sampling

$$j_n \sim j(x)$$

$$j(x) = \begin{cases} 1 & |x| \le 1/2 \\ 0 & |x| > 1/2 \end{cases}$$

$$J(\omega) = \operatorname{sinc} \omega$$

$$S(\omega) = \frac{1}{T} \left[1 - \left| J(\omega) \right|^2 \right] + \frac{2\pi}{T^2} \left| J(\omega) \right|^2 \sum_{n = -\infty}^{n = -\infty} \delta(\omega - \frac{2\pi n}{T})$$

$$= \frac{1}{T} \left[1 - \operatorname{sinc}^2 \omega \right] + \delta(\omega)$$

CS348B Lecture 9

Poisson Disk Sampling

Dart throwing algorithm

CS348B Lecture 9