The Light Field

Concepts
- Light field = radiance function on rays
- Conservation of radiance
- Throughput and counting rays
- Measurement equation
- Radiosity
- Irradiance

From London and Upton

Radiant Power/Intensity/Irradiance

\[I = \frac{\Phi}{4\pi} \]

\[EdA = Id\omega \]

\[E = \frac{\Phi \cos \theta}{4\pi \ r^2} \]
Light Field = Radiance(Ray)

Field Radiance

Definition: The field *radiance* (*luminance*) at a point in space in a given direction is the power per unit solid angle per unit area perpendicular to the direction.

$$dA \quad r(x, \omega) \quad d\omega \quad L(x, \omega)$$

Radiance is the quantity associated with a ray.
Gazing Ball ⇒ Environment Maps

Miller and Hoffman, 1984

- Photograph of mirror ball
- Reflection direction indexed by normal
- Image is the radiance in the reflected dir.

Environment Maps

Interface, Chou and Williams (ca. 1985)
The Sky Radiance Distribution

From Greenler, Rainbows, halos and glories

Spherical Gantry \Rightarrow 4D Light Field

Capture all the light leaving an object - like a hologram
Multi-Camera Array ⇒ Light Field

Two-Plane Light Field

\[L(u, v, s, t) \]
Properties of Radiance

1. Fundamental field quantity that characterizes the distribution of light in an environment.
 - Radiance is a function on rays
 - All other field quantities are derived from it
2. Radiance invariant along a ray.
 - 5D ray space reduces to 4D
3. Response of a sensor proportional to radiance.
1st Law: Conversation of Radiance

The radiance in the direction of a light ray remains constant as the ray propagates

\[d^2 \Phi_1 = d^2 \Phi_2 \]

\[d^2 \Phi_1 = L_1 d\omega_1 dA_1 \]

\[d^2 \Phi_2 = L_2 d\omega_2 dA_2 \]

\[d\omega_1 dA_1 = \frac{dA_1 dA_2}{r^2} = d\omega_2 dA_2 \]

\[\therefore L_1 = L_2 \]

Quiz

Does radiance increase under a magnifying glass?

No!!
Measuring Rays = Throughput

Throughput Counts Rays

Define an infinitesimal beam as the set of rays intersecting two infinitesimal surface elements

\[r(u_1, v_1, u_2, v_2) \]

\[dA_1(u_1, v_1) \quad \text{and} \quad dA_2(u_2, v_2) \]

The differential throughput measures size of the beam:

\[d^2T = \frac{dA_1 dA_2}{|x_1 - x_2|^2} \]
Parameterizing Rays

Parameterize rays wrt to receiver \(r(u_2, v_2, \theta_2, \phi_2) \)

\[
d\omega_2(\theta_2, \phi_2) \quad \quad \quad \quad \quad dA_2(u_2, v_2)
\]

\[
d^2T = \frac{dA_1}{|x_1 - x_2|^2} dA_2 = d\omega_2 dA_2
\]

Parameterizing Rays

Parameterize rays wrt to source \(r(u_1, v_1, \theta_1, \phi_1) \)

\[
dA_1(u_1, v_1) \quad \quad \quad \quad \quad d\omega_1(\theta_1, \phi_1)
\]

\[
d^2T = dA_1 \frac{dA_2}{|x_1 - x_2|^2} = dA_1 d\omega_1
\]
Parameterizing Rays

Tilting the surfaces reparameterizes the rays!

\[dA_1(u_1, v_1) \rightarrow dA_2(u_2, v_2) \]

\[d^2T = \frac{\cos \theta_1 \cos \theta_2}{|x_1 - x_2|^2} dA_1 dA_2 \]

Parameterizing Rays: \(S^2 \times \mathbb{R}^2 \)

Parameterize rays by \(r(x, y, \theta, \phi) \)

Projected area \(\tilde{A}(\tilde{\omega}) \)

Measuring the number or rays that hit a shape

\[T = \int_{S^2} d\omega(\theta, \phi) \int_{\mathbb{R}^2} dA(x, y) \]

\[= \int_{S^2} \tilde{A}(\theta, \phi) d\omega(\theta, \phi) \]

\[= 4\pi \tilde{A} \]

Sphere:

\[T = 4\pi \tilde{A} = 4\pi^2 R^2 \]
Parameterizing Rays: $M^2 \times S^2$

Parameterize rays by $r(u, v, \theta, \phi)$

\[
T = \int_{M^2} dA(u, v) \int_{H^2(N)} \cos \theta d\omega(\theta, \phi)
\]

Sphere: $T = \pi S = 4\pi^2 R^2$

Crofton’s Theorem: $4\pi \bar{A} = \pi S \Rightarrow \bar{A} = \frac{S}{4}$

The Measurement Equation
Radiance: 2nd Law

The response of a sensor is proportional to the radiance of the surface visible to the sensor.

\[
R = \int\int_A L d\omega dA = \bar{L}T
\]

\[
T = \int\int_A d\omega dA
\]

\(L\) is what should be computed and displayed.

\(T\) quantifies the gathering power of the device; the higher the throughput the greater the amount of light gathered.

Quiz

Does the brightness that a wall appears to the sensor depend on the distance?

\[\text{No!!}\]
Radiant Exitance

(Radiosity)

Definition: The radiant (luminous) exitance is the energy per unit area leaving a surface.

\[
M(x) \equiv \frac{d\Phi_o}{dA}
\]

\[
\begin{bmatrix}
W \\
\frac{m^2}{m^2}
\end{bmatrix}
\begin{bmatrix}
\frac{lm}{m^2} = lux
\end{bmatrix}
\]

In computer graphics, this quantity is often referred to as the radiosity (B)
Directional Power Leaving a Surface

\[
\frac{L_o(x, \omega)}{d\omega} = \frac{d^2 \Phi_o(x, \omega)}{dA} = L_o(x, \omega) \cos \theta dA d\omega
\]

Area Light Source

\[
d^2 \Phi(x, \omega) = L_o(x, \omega) \cos \theta d\omega dA = dM(x, \omega) dA
\]

\[
dM(x, \omega) = L_o(x, \omega) \cos \theta d\omega dA
\]

Same \(dA \) for all directions
Uniform Diffuse Emitter

\[M = \int_{H^2} L_o \cos \theta \, d\omega \]

\[= L_o \int_{H^2} \cos \theta \, d\omega \]

\[L_o(x, \omega) = L_o \]

\[H^2 \text{ Hemisphere} \]

Projected Solid Angle

\[\tilde{\Omega} \equiv \int_{\Omega} \cos \theta \, d\omega \]

\[\tilde{\Omega} = \int_{H^2} \cos \theta \, d\omega = \pi \]
Uniform Diffuse Emitter

\[
M = \int_{H^2} L_o \cos \theta \, d\omega \\
= L_o \int_{H^2} \cos \theta \, d\omega \\
= \pi L_o \\
L_o = \frac{M}{\pi}
\]

Irradiance
Directional Power Arriving at a Surface

\[d^2 \Phi_i(x, \omega) = L_i(x, \omega) \cos \theta dA d\omega \]

Irradiance from the Environment

\[d^2 \Phi_i(x, \omega) = L_i(x, \omega) \cos \theta dA d\omega \]
\[dE(x, \omega) = L_i(x, \omega) \cos \theta d\omega \]

\[E(x) = \int_{4\pi} L_i(x, \omega) \cos \theta d\omega \]
Irradiance Environment Maps

\[L(\theta, \varphi) \quad R \]
\[E(\theta, \varphi) \quad N \]

Radiance Environment Map

Irradiance Environment Map

Isolux contours

Irradiance Map or Light Map
Irradiance from the Environment

\[d^2 \Phi_i(x, \omega) = L_i(x, \omega) \cos \theta \, dA \, d\omega \]

\[dE(x, \omega) \equiv \frac{d^2 \Phi}{dA} = L_i(x, \omega) \cos \theta \, d\omega \]

\[E(x) = \int_{iH} L_i(x, \omega) \cos \theta \, d\omega \]

Uniform Area Source

\[E(x) = \int_{iH} L \cos \theta \, d\omega \]

\[= L \int_{\tilde{\Omega}} \cos \theta \, d\omega \]

\[= L \tilde{\Omega} \]
Uniform Disk Source

Geometric Derivation

\[\Omega = \pi \sin^2 \alpha \]

Algebraic Derivation

\[\Omega = \int_0^{2\pi} \int_0^\cos \alpha \cos \theta \, d\phi \, d\cos \theta \]
\[= 2\pi \left[\cos^2 \theta \right]_1^\cos \alpha \]
\[= \pi \sin^2 \alpha \]
\[= \pi \frac{r^2}{r^2 + h^2} \]

Spherical Source

Geometric Derivation

\[\Omega = \pi \sin^2 \alpha \]

Algebraic Derivation

\[\Omega = \int \cos \theta \, d\omega \]
\[= \pi \sin^2 \alpha \]
\[= \pi \frac{r^2}{R^2} \]
The Sun

Solar constant (normal incidence at zenith)

Irradiance 1353 W/m²
Illuminance 127,500 lm/m² = 127.5 kilolux

Solar angle

\[\alpha = 0.25 \text{ degrees} = 0.004 \text{ radians (half angle)} \]

\[\tilde{\Omega} = \pi \sin^2 \alpha \approx \pi \alpha^2 = 6 \times 10^{-5} \text{ steradians} \]

Solar radiance

\[L = \frac{E}{\tilde{\Omega}} = \frac{1.353 \times 10^3 \text{ W/m}^2}{6 \times 10^{-5} \text{ sr}} = 2.25 \times 10^7 \frac{\text{W}}{m^2 \cdot \text{sr}} \]

Polygonal Source
Consider 1 Edge

\(\gamma_i \) Area of sector

\[A = \gamma \cos \theta = \gamma \vec{N}_E \cdot \vec{N} \]

Lambert’s Formula

\[\sum_{i=1}^{3} A_i = A_1 - A_2 - A_3 \]

\[\sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \gamma_i \vec{N}_i \cdot \vec{N} \]
Penumbras and Umbras

emitter

occluder

receiver

umbra

penumbra