The Rendering Equation

Direct (local) illumination

- Light directly from light sources
- No shadows

Indirect (global) illumination

- Hard and soft shadows
- Diffuse interreflections (radiosity)
- Glossy interreflections (caustics)

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Radiosity

CS348B Lecture 13

Lighting Effects

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Challenge

To evaluate the reflection equation the incoming radiance must be known

$$L_r(x, \omega_r) = \int_{H^2} f_r(x, \omega_i \to \omega_r) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

To evaluate the incoming radiance the reflected radiance must be known

CS348B Lecture 13

To The Rendering Equation

Questions

- 1. How is light measured?
- 2. How is the spatial distribution of light energy described?
- 3. How is reflection from a surface characterized?
- 4. What are the conditions for equilibrium flow of light in an environment?

CS348B Lecture 13

Balance Equation

Accountability

[outgoing] - [incoming] = [emitted] - [absorbed]

Macro level

The total light energy put into the system must equal the energy leaving the system (usually, via heat).

$$\Phi_{o} - \Phi_{i} = \Phi_{e} - \Phi_{a}$$

■ Micro level

The energy flowing into a small region of phase space must equal the energy flowing out.

$$B(x) - E(x) = B_e(x) - E_a(x)$$

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Surface Balance Equation

[outgoing] = [emitted] + [reflected]

$$\begin{split} L_o(x, \omega_o) &= L_e(x, \omega_o) + L_r(x, \omega_o) \\ &= L_e(x, \omega_o) + \int_{H^2} f_r(x, \omega_i \to \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i \end{split}$$

CS348B Lecture 13

Direction Conventions

BRDF

Surface vs. Field Radiance

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Surface Balance Equation

[outgoing] = [emitted] + [reflected] + [transmitted]

$$L_o(x,\omega_o) = L_e(x,\omega_o) + L_r(x,\omega_o) + L_t(x,\omega_o)$$

$$H^2_{-}$$
 ω_i
 n
 m

$$L_r(x,\omega_o) = \int_{H_+^2} f_r(x,\omega_i \to \omega_o) L_i(x,\omega_i) \cos \theta_i d\omega_i$$

$$L_{r}(x,\omega_{o}) = \int_{H_{+}^{2}} f_{r}(x,\omega_{i} \to \omega_{o}) L_{i}(x,\omega_{i}) \cos \theta_{i} d\omega_{i}$$

$$\omega_{i} \quad L_{t}(x,\omega_{o}) = \int_{H_{-}^{2}} f_{t}(x,\omega_{t} \to \omega_{o}) L_{i}(x,\omega_{t}) \cos \theta_{t} d\omega_{t}$$

$$H_+^2(n)$$
 $\omega_o \bullet n(x) > 0$

$$H_{-}^{2}(n)$$
 $\omega_{o} \bullet n(x) < 0$

BTDF

CS348B Lecture 13

Two-Point Geometry

$$\omega(x,x') = \omega(x \to x') = \frac{x'-x}{|x'-x|}$$
Ray Tracing
$$x^*(x,\omega)$$

$$\omega_o = \omega(x',x)$$

$$\alpha' = x'(x,\omega_i)$$

$$\alpha' = \omega(x,x')$$

$$\alpha' = x^*(x,\omega_i)$$

$$\alpha' = x^*(x',\omega_o)$$

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Coupling Equations

CS348B Lecture 13

The Rendering Equation

Directional form

Integrate over hemisphere of directions

Transport operator i.e. ray tracing

CS348B Lecture 13

Pat Hanrahan, Spring 2006

The Rendering Equation

Surface form

$$L(x',x) = L_e(x',x) +$$

$$\int_{M^2} f_r(x'',x',x) L(x'',x') G(x'',x') dA''(x'')$$
Geometry term
$$\int_{M^2} Geometry term$$

$$\int_{M^2} Geometry term$$

$$\int_{M^2} Geometry term$$

Integrate over all surfaces
$$G(x'', x') = \frac{\cos \theta_i'' \cos \theta_o'}{\left\|x'' - x'\right\|^2} V(x'', x')$$

Visibility term

$$V(x'', x') = \begin{cases} 1 & \text{visible} \\ 0 & \text{not visible} \end{cases}$$

CS348B Lecture 13

The Radiosity Equation

Assume diffuse reflection

1.
$$f_r(x, \omega_i \to \omega_o) = f_r(x) \Rightarrow \rho(x) = \pi f_r(x)$$

2.
$$L(x,\omega) = B(x)/\pi$$

$$B(x) = B_e(x) + \rho(x)E(x)$$

$$B(x) = B_e(x) + \rho(x) \int_{M^2} F(x, x')B(x') dA'(x')$$

$$F(x, x') = \frac{G(x, x')}{\pi}$$

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Integral Equations

Integral equations of the 1st kind

$$f(x) = \int k(x, x')g(x') dx'$$

Integral equations of the 2nd kind

$$f(x) = g(x) + \int k(x, x') f(x') dx'$$

CS348B Lecture 13

Linear Operators

Linear operators act on functions like matrices act on vectors

$$h(x) = (L \circ f)(x)$$

They are linear in that

$$L \circ (af + bg) = a(L \circ f) + b(L \circ g)$$

Types of linear operators

$$(K \circ f)(x) \equiv \int k(x, x') f(x') dx'$$
$$(D \circ f)(x) \equiv \frac{\partial f}{\partial x}(x)$$

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Solving the Rendering Equation

Rendering Equation

$$L = L_e + K \circ L$$
$$(I - K) \circ L = L_e$$

Solution

$$L = (I - K)^{-1} \circ L_e$$

CS348B Lecture 13

Formal Solution

Neumann series

$$(I-K)^{-1} = \frac{1}{I-K} = I+K+K^2+\dots$$

Verify

$$(I-K) \circ (I-K)^{-1} = (I-K) \circ (I+K+K^2+...)$$
$$= (I+K+...) - (K+K^2+...)$$
$$= I$$

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Successive Approximations

Successive approximations

$$\begin{split} L^1 &= L_e \\ L^2 &= L_e + K \circ L^1 \\ \cdots \\ L^n &= L_e + K \circ L^{n-1} \end{split}$$

Converged

$$L^n = L^{n-1}$$
 : $L^n = L_{\rho} + K \circ L^n$

CS348B Lecture 13

 $L_e + \cdots K^2 \circ L_e$

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Light Path

CS348B Lecture 13

Light Path

$$L_{S}(x_{0}, x_{1}, x_{2}, x_{3}) = S(x_{0}, x_{1})G(x_{0}, x_{1})f_{r}(x_{0}, x_{1}, x_{2})G(x_{1}, x_{2})f_{r}(x_{1}, x_{2}, x_{3})$$

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Light Paths

$$L(x_2, x_3) = \int_{A_0} \int_{A_1} L_S(x_0, x_1, x_2, x_3) dA(x_0) dA(x_1)$$

CS348B Lecture 13

Light Transport

Integrate over all paths of all lengths

$$L(x_{k-1}, x_k) = \sum_{k=1}^{\infty} \int_{M^2} \cdots \int_{M^2} L_S(x_0, \dots, x_{k-2}, x_{k-1}, x_k) dA(x_0) \cdots dA(x_{k-2})$$

Question:

■ How to sample space of paths?

CS348B Lecture 13

Pat Hanrahan, Spring 2006

Classic Ray Tracing

Forward (from eye): E S* (D|G) L

CS348B Lecture 13

How to Solve It?

Finite element methods

- Classic radiosity
 - Mesh surfaces
 - Piecewise constant basis functions
 - Solve matrix equation
- Not practical for rendering equation

Monte Carlo methods

- Path tracing (distributed ray tracing)
- Bidirectional ray tracing
- **Photon mapping**

CS348B Lecture 13