Sampling and Reconstruction

The sampling and reconstruction process

- Real world: continuous
- Digital world: discrete

Basic signal processing

- **Fourier transforms**
- The convolution theorem
- The sampling theorem

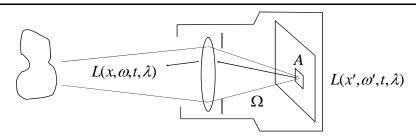
Aliasing and antialiasing

- Uniform supersampling
- Nonuniform supersampling

CS348B Lecture 9

Pat Hanrahan, Spring 2007

Camera Simulation



$$R = \iiint\limits_{A \Omega T \Lambda} P(x', \lambda) S(x', \omega', t) L(T(x', \omega', \lambda), t, \lambda) \ d\vec{A}(x') \bullet d\vec{\omega}' \ dt \ d\lambda$$

Sensor response $P(x',\lambda)$

Lens $(x,\omega) = T(x',\omega',\lambda)$

Shutter $S(x', \omega', t)$ Scene radiance $L(x, \omega, t, \lambda)$

CS348B Lecture 9

Imagers = Signal Sampling

All imagers convert a continuous image to a discrete sampled image by integrating over the active "area" of a sensor.

$$R = \iiint_{T} \iint_{\Omega} L(x, \omega, t) P(x) S(t) \cos \theta \, dA \, d\omega \, dt$$

Examples:

- Retina: photoreceptors
- **CCD** array

Virtual CG cameras do not integrate, they simply sample radiance along rays ...

CS348B Lecture 9

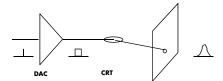
Pat Hanrahan, Spring 2007

Displays = Signal Reconstruction

All physical displays recreate a continuous image from a discrete sampled image by using a finite sized source of light for each pixel.

Examples:

- DACs: sample and hold
- Cathode ray tube: phosphor spot and grid



CS348B Lecture 9

Sampling in Computer Graphics

Artifacts due to sampling - Aliasing

- Jaggies
- Moire
- Flickering small objects
- Sparkling highlights
- Temporal strobing

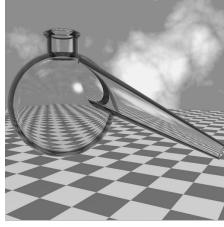
Preventing these artifacts - Antialiasing

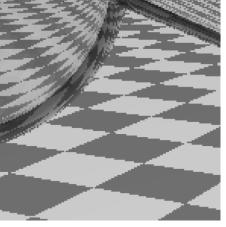
CS348B Lecture 9

Pat Hanrahan, Spring 2007

Jaggies

Retort sequence by Don Mitchell





Staircase pattern or jaggies

CS348B Lecture 9

Basic Signal Processing

Fourier Transforms

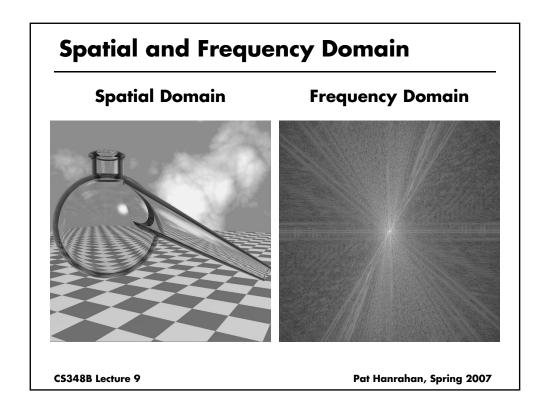
Spectral representation treats the function as a weighted sum of sines and cosines

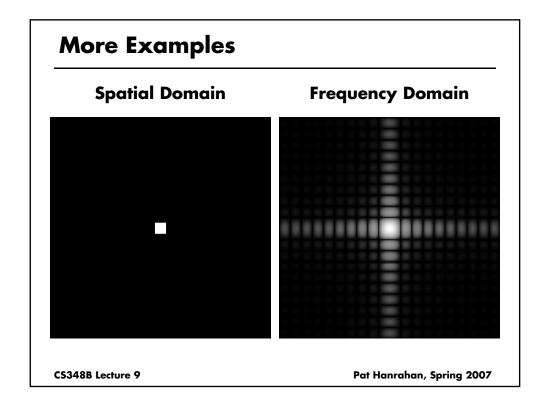
Each function has two representations

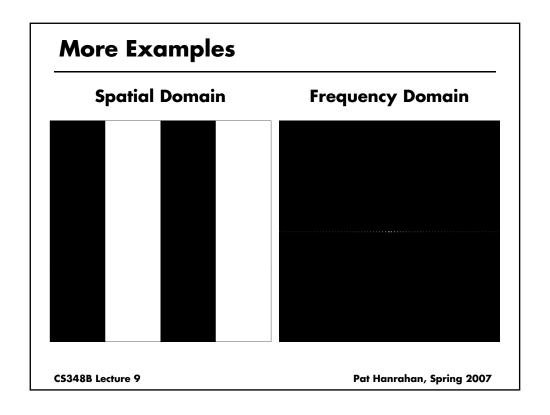
- Spatial domain normal representation
- Frequency domain spectral representation

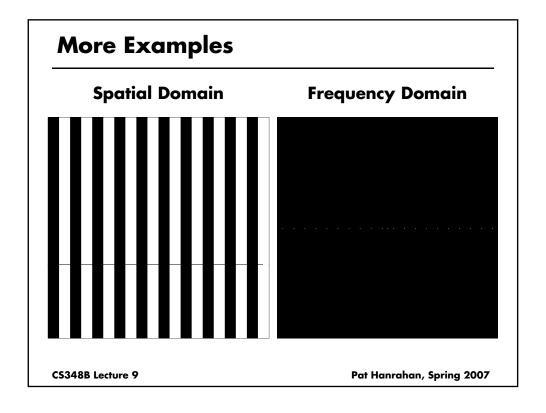
The Fourier transform converts between the spatial and frequency domain

CS348B Lecture 9

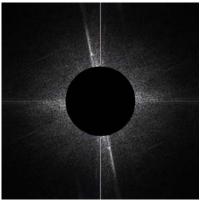








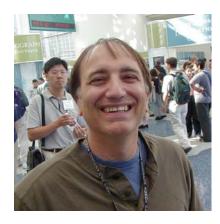
Pat's Frequencies

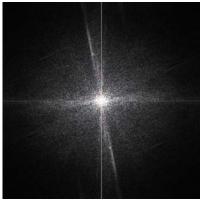


CS348B Lecture 9

Pat Hanrahan, Spring 2007

Pat's Frequencies





CS348B Lecture 9

Convolution

Definition

$$h(x) = f \otimes g = \int f(x')g(x - x') dx'$$

Convolution Theorem: Multiplication in the frequency domain is equivalent to convolution in the space domain.

$$f \otimes g \leftrightarrow F \times G$$

Symmetric Theorem: Multiplication in the space domain is equivalent to convolution in the frequency domain.

$$f \times g \leftrightarrow F \otimes G$$

CS348B Lecture 9

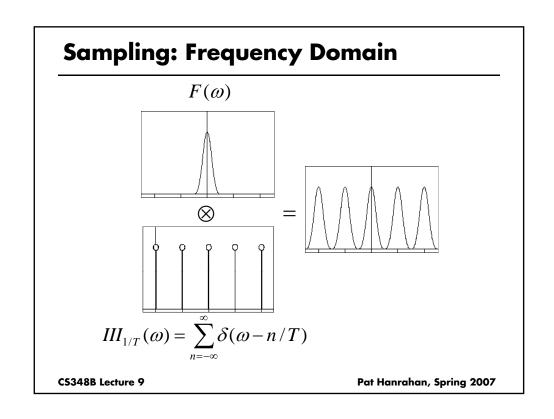
Pat Hanrahan, Spring 2007

The Sampling Theorem

Sampling: Spatial Domain
$$f(x)$$

$$\sum_{n=-\infty}^{\infty} \delta(x-nT) f(nT)$$

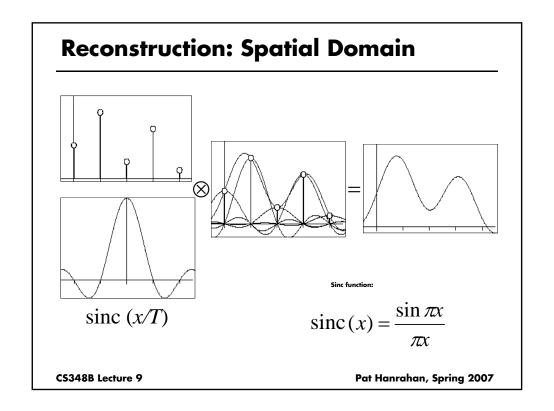
$$III(x) = \sum_{n=-\infty}^{\infty} \delta(x-nT)$$
CS348B Lecture 9
Pat Hanrahan, Spring 2007

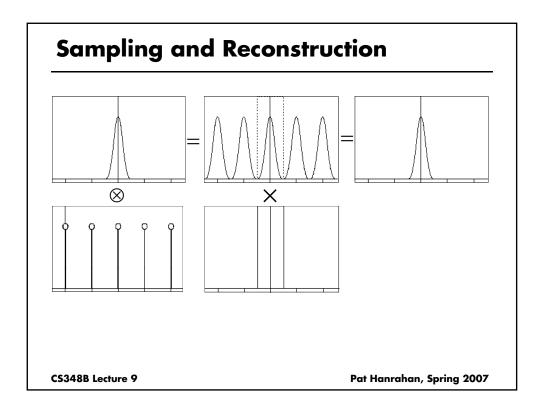


Reconstruction: Frequency Domain
$$\Pi_{1/T}(x)$$

$$\Pi_{T}(x) = \begin{cases} 1 & |x| \leq \frac{T}{2} \\ 0 & |x| > \frac{T}{2} \end{cases}$$
CS348B Lecture 9

Rect function of width T:





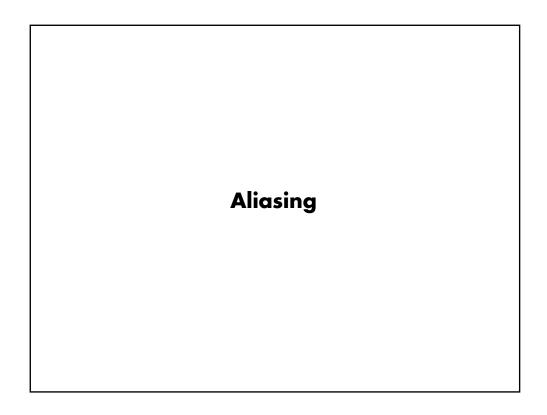
Sampling Theorem

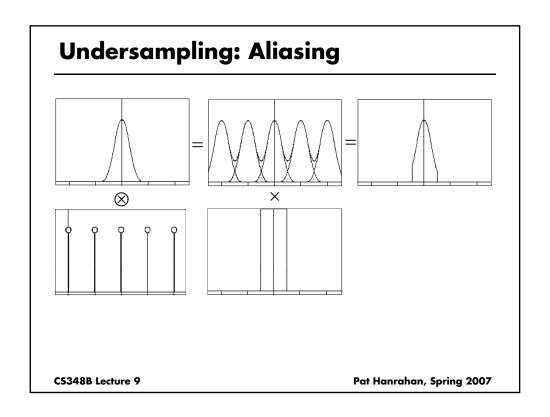
This result if known as the Sampling Theorem and is due to Claude Shannon who first discovered it in 1949

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above 1/2 the Sampling frequency

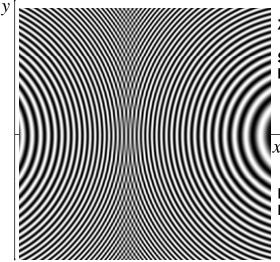
For a given bandlimited function, the rate at which it must be sampled is called the *Nyquist Frequency*

CS348B Lecture 9





Sampling a "Zone Plate"



Zone plate: $\sin x^2 + y^2$

Sampled at 128x128
Reconstructed to 512x512
Using a 30-wide
Kaiser windowed sinc

Left rings: part of signal Right rings: prealiasing

CS348B Lecture 9

Pat Hanrahan, Spring 2007

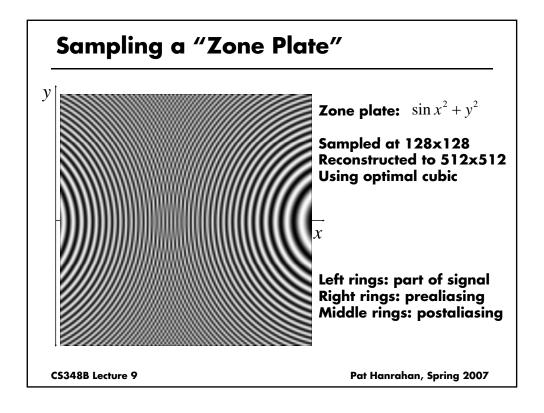
Ideal Reconstruction

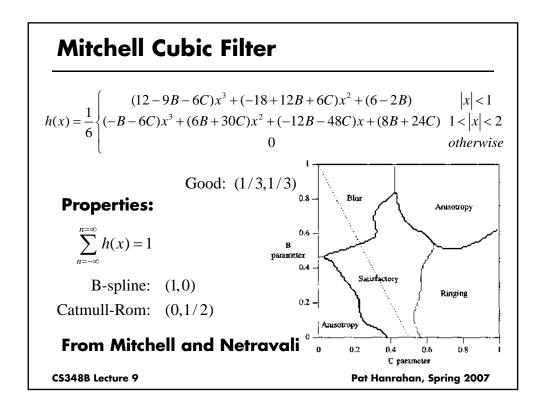
Ideally, use a perfect low-pass filter - the sinc function - to bandlimit the sampled signal and thus remove all copies of the spectra introduced by sampling

Unfortunately,

- The sinc has infinite extent and we must use simpler filters with finite extents. Physical processes in particular do not reconstruct with sincs
- The sinc may introduce ringing which are perceptually objectionable

CS348B Lecture 9





Aliasing ■ Prealiasing: due to sampling under Nyquist ■ Postaliasing: due to use of imperfect reconstruction filter CS348B Lecture 9 Pat Hanrahan, Spring 2007 **Antialiasing**

Antialiasing

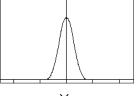
Antialiasing = Preventing aliasing

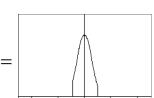
- 1. Analytically prefilter the signal
 - Solvable for points, lines and polygons
 - Not solvable in general e.g. procedurally defined images
- 2. Uniform supersampling and resample
- 3. Nonuniform or stochastic sampling

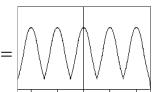
CS348B Lecture 9

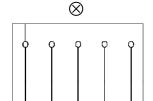
Pat Hanrahan, Spring 2007

Antialiasing by Prefiltering









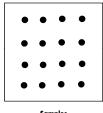
Frequency Space

CS348B Lecture 9

Uniform Supersampling

Increasing the sampling rate moves each copy of the spectra further apart, potentially reducing the overlap and thus aliasing

Resulting samples must be resampled (filtered) to image sampling rate



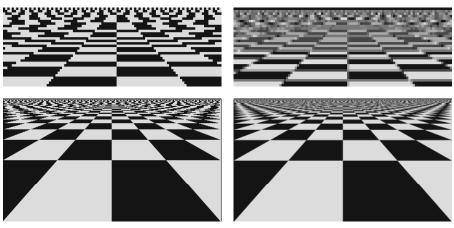
$$Pixel = \sum_{s} w_{s} \cdot Sample_{s}$$

Pixel

CS348B Lecture 9

Pat Hanrahan, Spring 2007

Point vs. Supersampled

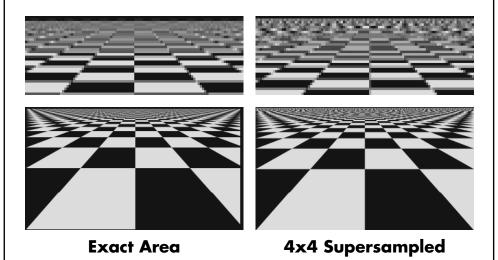


Point

4x4 Supersampled

Checkerboard sequence by Tom Duff

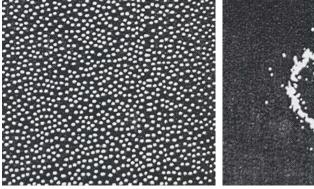
CS348B Lecture 9



CS348B Lecture 9

Pat Hanrahan, Spring 2007

Distribution of Extrafoveal Cones



Monkey eye cone distribution

Fourier transform

Yellot theory

- Aliases replaced by noise
- Visual system less sensitive to high freq noise

CS348B Lecture 9

Non-uniform Sampling

Intuition

Uniform sampling

- The spectrum of uniformly spaced samples is also a set of uniformly spaced spikes
- Multiplying the signal by the sampling pattern corresponds to placing a copy of the spectrum at each spike (in freq. space)
- Aliases are coherent, and very noticable

Non-uniform sampling

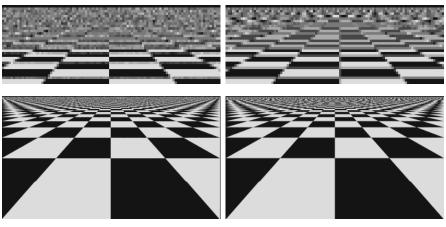
- Samples at non-uniform locations have a different spectrum; a single spike plus noise
- Sampling a signal in this way converts aliases into broadband noise
- Noise is incoherent, and much less objectionable

CS348B Lecture 9

Pat Hanrahan, Spring 2007

Add uniform random jitter to each sample CS348B Lecture 9 Pat Hanrahan, Spring 2007

Jittered vs. Uniform Supersampling



4x4 Jittered Sampling

4x4 Uniform

CS348B Lecture 9

Pat Hanrahan, Spring 2007

Analysis of Jitter

Non-uniform sampling

$s(x) = \sum_{n=-\infty}^{\infty} \delta(x - x_n)$

$$x_n = nT + j_n$$

 $j_n \sim j(x)$

$$j(x) = \begin{cases} 1 & |x| \le 1/2 \\ 0 & |x| > 1/2 \end{cases}$$

Jittered sampling

$$J(\omega) = \operatorname{sinc} \omega$$

$$S(\omega) = \frac{1}{T} \left[1 - \left| J(\omega) \right|^2 \right] + \frac{2\pi}{T^2} \left| J(\omega) \right|^2 \sum_{n = -\infty}^{n = -\infty} \delta(\omega - \frac{2\pi n}{T})$$

$$= \frac{1}{T} \left[1 - \operatorname{sinc}^2 \omega \right] + \delta(\omega)$$

CS348B Lecture 9

