The Rendering Equation

Direct (local) illumination
- Light directly from light sources
- No shadows

Indirect (global) illumination
- Hard and soft shadows
- Diffuse interreflections (radiosity)
- Glossy interreflections (caustics)

Radiosity
Lighting Effects

Hard Shadows Soft Shadows

Caustics Indirect Illumination

Challenge

To evaluate the reflection equation
the incoming radiance must be known

\[L_r(x, \omega_r) = \int_{H^2} f_r(x, \omega_i \rightarrow \omega_r) L_i(x, \omega_i) \cos \theta_i \, d\omega_i \]

To evaluate the incoming radiance
the reflected radiance must be known
To The Rendering Equation

Questions
1. How is light measured?
2. How is the spatial distribution of light energy described?
3. How is reflection from a surface characterized?
4. What are the conditions for equilibrium flow of light in an environment?

The Grand Scheme

Light and Radiometry

Energy Balance

Surface Rendering Equation

Volume Rendering Equation

Radiosity Equation
Balance Equation

Accountability

[outgoing] - [incoming] = [emitted] - [absorbed]

- Macro level

The total light energy put into the system must equal the energy leaving the system (usually, via heat).

\[\Phi_o - \Phi_i = \Phi_e - \Phi_a \]

- Micro level

The energy flowing into a small region of phase space must equal the energy flowing out.

\[B(x) - E(x) = B_e(x) - E_a(x) \]

Surface Balance Equation

[outgoing] = [emitted] + [reflected]

\[L_o(x, \omega_o) = L_e(x, \omega_o) + L_i(x, \omega_o) \]

\[= L_e(x, \omega_o) + \int_{H^2} f_i(x, \omega_i \rightarrow \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i \]
Direction Conventions

\[f_r(\omega_i \rightarrow \omega_o) \]

- \[L_i(x, \omega_i) = L(x, -\omega_i) \]
- \[L(x, \omega) = L_o(x, \omega_o) \]

BRDF

Surface vs. Field Radiance

Surface Balance Equation

\[\text{[outgoing]} = \text{[emitted]} + \text{[reflected]} + \text{[transmitted]} \]

\[L_o(x, \omega_o) = L_e(x, \omega_o) + L_r(x, \omega_o) + L_t(x, \omega_o) \]

\[L_r(x, \omega_o) = \int_{H^2} f_r(x, \omega_i \rightarrow \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i \]

\[L_t(x, \omega_o) = \int_{H^2} f_t(x, \omega_i \rightarrow \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i \]

\[H^2(x) \quad \omega_o \cdot n(x) > 0 \]

\[H^2(x) \quad \omega_o \cdot n(x) < 0 \]

BTDF

CS348B Lecture 13 Pat Hanrahan, Spring 2008
Two-Point Geometry

\[\omega(x, x') = \frac{x' - x}{|x' - x|} = \frac{x' - x}{|x'| - x} \]

Ray Tracing

\[x^*(x, \omega) \]

\[\omega_i = \omega(x, x') \]

\[x' = x^*(x, \omega_i) \]

\[x = x^*(x', \omega_o) \]

Coupling Equations

\[L(x', \omega') = L_o(x', \omega_o) \]

\[L_i(x, \omega_i) = L(x, -\omega_i) \]

\[L(x, \omega) = L(x', \omega') \]

Invariance of radiance
The Rendering Equation

Directional form

\[L(x, \omega) = L_e(x, \omega) + \int_{H^2} f_r(x, \omega' \rightarrow \omega) L(x^*(x, \omega'), -\omega') \cos \theta' \, d\omega' \]

Integrate over hemisphere of directions

Transport operator i.e. ray tracing

\[\int_{H^2} \]

Surface form

\[L(x', x) = L_e(x', x) + \int_{M^2} f_r(x'', x', x) L(x'', x') G(x'', x') \, dA''(x'') \]

Integrate over all surfaces

Geometry term

\[G(x'', x') = \frac{\cos \theta'' \cos \theta'}{\|x'' - x'\|^2} V(x'', x') \]

Visibility term

\[V(x'', x') = \begin{cases} 1 & \text{visible} \\ 0 & \text{not visible} \end{cases} \]
The Radiosity Equation

Assume diffuse reflection
1. \(f_i(x, \omega_i \rightarrow \omega_o) = f_i(x) \Rightarrow \rho(x) = \pi f_i(x) \)
2. \(L(x, \omega) = B(x) / \pi \)

\[
B(x) = B_i(x) + \rho(x)E(x) \\
B(x) = B_i(x) + \rho(x) \int F(x, x')B(x')dA'(x') \\
F(x, x') = \frac{G(x, x')}{\pi}
\]

Integral Equations

Integral equations of the 1st kind
\[
f(x) = \int k(x, x')g(x') dx'
\]

Integral equations of the 2nd kind
\[
f(x) = g(x) + \int k(x, x')f(x') dx'
\]
Linear Operators

Linear operators act on functions like matrices act on vectors

\[h(x) = (L \circ f)(x) \]

They are linear in that

\[L \circ (af + bg) = a(L \circ f) + b(L \circ g) \]

Types of linear operators

\[(K \circ f)(x) \equiv \int k(x,x')f(x')dx' \]
\[(D \circ f)(x) \equiv \frac{\partial f}{\partial x}(x) \]

Solving the Rendering Equation

Rendering Equation

\[L = L_e + K \circ L \]
\[(I - K) \circ L = L_e \]

Solution

\[L = (I - K)^{-1} \circ L_e \]

CS348B Lecture 13 Pat Hanrahan, Spring 2008
Formal Solution

Neumann series

\[(I - K)^{-1} = \frac{1}{I - K} = I + K + K^2 + \ldots\]

Verify

\[(I - K) \circ (I - K)^{-1} = (I - K) \circ (I + K + K^2 + \ldots)\]
\[= (I + K + \ldots) - (K + K^2 + \ldots)\]
\[= I\]

Successive Approximations

Successive approximations

\[L^1 = L_e\]
\[L^2 = L_e + K \circ L^1\]
\[\ldots\]
\[L^n = L_e + K \circ L^{n-1}\]

Converged

\[L^n = L^{n-1} \therefore L^n = L_e + K \circ L^n\]
Successive Approximation

\[
L_e \quad K \circ L_e \quad K \circ K \circ L_e \\
L_e \quad L_e + K \circ L_e \quad L_e + \cdots K^2 \circ L_e \quad L_e + \cdots K^3 \circ L_e
\]

Light Path

\[
S(x_0, x_1) = L_e(x_0, x_1)
\]
Light Path

\[L_3(x_0, x_1, x_2, x_3) = S(x_0, x_1) G(x_0, x_1) f_r(x_0, x_1, x_2) G(x_1, x_2) f_r(x_1, x_2, x_3) \]

Light Paths

\[L(x_2, x_3) = \int \int_{A_0, A_1} L_3(x_0, x_1, x_2, x_3) dA(x_0) dA(x_1) \]
Light Transport

Integrate over all paths of all lengths

\[L(x_{k-1}, x_k) = \sum_{k=1}^{\infty} \int \cdots \int L_s(x_0, \ldots, x_{k-2}, x_{k-1}, x_k) dA(x_0) \cdots dA(x_{k-2}) \]

Question:
- How to sample space of paths?

Classic Ray Tracing

Forward (from eye): \(E S^* (D|G) L \)

From Heckbert
Photon Paths

How to Solve It?

Finite element methods
- Classic radiosity
 - Mesh surfaces
 - Piecewise constant basis functions
 - Solve matrix equation
- Not practical for rendering equation

Monte Carlo methods
- Path tracing (distributed ray tracing)
- Bidirectional ray tracing
- Photon mapping