Camera Simulation

<table>
<thead>
<tr>
<th>Effect</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of view</td>
<td>Film size, stops and pupils</td>
</tr>
<tr>
<td>Depth of field</td>
<td>Aperture, focal length</td>
</tr>
<tr>
<td>Exposure</td>
<td>Film speed, aperture, shutter</td>
</tr>
<tr>
<td>Motion blur</td>
<td>Shutter</td>
</tr>
</tbody>
</table>

References
Photography, B. London and J. Upton
Optics in Photography, R. Kingslake
The Camera, The Negative, The Print, A. Adams

Topics

Lenses
Focus
Depth of focus / depth of field
Exposure
Lenses

Refraction at a Spherical Lens

\[n : \text{index of refraction} \]
Angle of Incidence

\[I = U + \phi \]

The sum of the interior angles is equal to the exterior angle.

Angle of Refraction

\[I' = U' + \phi \]
Snell’s Law

\[n' \sin I' = n \sin I \]

Snell’s Law

\[n' \sin(U' + \phi) = n \sin(U + \phi) \]

\[I = U + \phi \]

\[I' = U' + \phi \]
Refraction

\[n' \sin(U' + \phi) = n \sin(U + \phi) \]

Rays deviate only slightly from the axis

Paraxial Approximation: Small Angles

\[n'(u' + \phi) = n(u + \phi) \]

\[\sin A = a = \tan A \]
Angles to Slopes

\[u = \frac{h}{z} \quad u' = \frac{h}{z'} \quad \phi = -\frac{h}{R} \]

\[\sin \theta = a = \tan \theta \]

Gauss' Formula

Paraxial approximation to Snell's Law

\[n'(u' + \phi) = n(u + \phi) \]

Ray coordinates

\[u = \frac{h}{z} \quad u' = \frac{h}{z'} \quad \phi = -\frac{h}{R} \]

\[n'(\frac{h}{z'} - \frac{h}{R}) = n(\frac{h}{z} - \frac{h}{R}) \]

\[\frac{n'}{z'} = \frac{n}{z} + \frac{(n' - n)}{R} \]

\[\leftarrow \text{Holds for any height, any ray!} \]
Thin Lens Demonstration

http://www.physics.metu.edu.tr/~bucurgat/ntnujava/Lens/lens_e.html

Gauss’ Ray Tracing Construction

Parallel Ray
Focal Ray
Chief Ray
Object
Image
Conjugate Points

To focus: move lens relative to backplane
Horizontal rays converge on focal point in the focal plane

\[\frac{1}{z'} = \frac{1}{z} + \frac{1}{f} \]

Perspective Transformation

Thin lens equation – how z transforms?

\[\frac{1}{z'} = \frac{1}{z} + \frac{1}{f} \implies z' = \frac{fz}{z + f} \]

\[\Rightarrow x' = \frac{fx}{z + f} \]

\[\Rightarrow y' = \frac{fy}{z + f} \]

Represent lens transformation as a 4x4 matrix
Ray Tracing: Finite Aperture

1. Pick a point on image plane \(x' \)
2. Pick a point on the lens \(u \)
3. Transform \(x' \) to \(x \); form ray \((u,x-u)\)

Real Lens

Cutaway section of a Vivitar Series 1 90mm f/2.5 lens
Cover photo, Kingslake, *Optics in Photography*
Double Gauss

Data from W. Smith, Modern Lens Design, p 312

<table>
<thead>
<tr>
<th>Radius (mm)</th>
<th>Thick (mm)</th>
<th>n_d</th>
<th>V-no</th>
<th>aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.950</td>
<td>7.520</td>
<td>1.670</td>
<td>47.1</td>
<td>50.4</td>
</tr>
<tr>
<td>169.660</td>
<td>0.240</td>
<td></td>
<td></td>
<td>50.4</td>
</tr>
<tr>
<td>38.550</td>
<td>8.050</td>
<td>1.670</td>
<td>47.1</td>
<td>46.0</td>
</tr>
<tr>
<td>81.540</td>
<td>6.550</td>
<td>1.699</td>
<td>30.1</td>
<td>46.0</td>
</tr>
<tr>
<td>25.500</td>
<td>11.410</td>
<td></td>
<td></td>
<td>36.0</td>
</tr>
<tr>
<td>9.000</td>
<td></td>
<td></td>
<td></td>
<td>34.2</td>
</tr>
<tr>
<td>-28.990</td>
<td>2.360</td>
<td>1.603</td>
<td>38.0</td>
<td>34.0</td>
</tr>
<tr>
<td>81.540</td>
<td>12.130</td>
<td>1.658</td>
<td>57.3</td>
<td>40.0</td>
</tr>
<tr>
<td>-40.770</td>
<td>0.380</td>
<td></td>
<td></td>
<td>40.0</td>
</tr>
<tr>
<td>874.130</td>
<td>6.440</td>
<td>1.717</td>
<td>48.0</td>
<td>40.0</td>
</tr>
<tr>
<td>-79.460</td>
<td>72.228</td>
<td></td>
<td></td>
<td>40.0</td>
</tr>
</tbody>
</table>

Ray Tracing Through Lenses

From Kolb, Mitchell and Hanrahan (1995)

- 200 mm telephoto
- 35 mm wide-angle
- 50 mm double-gauss
- 16 mm fisheye
Depth of Field

From London and Upton

CS348B Lecture 7

Pat Hanrahan, 2009
Circle of Confusion

Circle of confusion proportional to the size of the aperture

\[
\frac{c}{a} = \frac{d'}{z'} = \frac{s' - z'}{z'}
\]

Resolving Power

- **Diffraction limit**
 \[
 c = 1.22 \frac{f}{\lambda} \quad [= 1.22 \times 64 \times .500\,\mu m = 0.040\,\text{mm}]
 \]

- **35mm film (Leica standard)**
 \[
 c = 0.025\,\text{mm}
 \]

- **CCD/CMOS pixel aperture**
 \[
 c = 0.0116\,\text{mm} \, \text{(Nikon D1)}
 \]
Depth of Focus [Image Space]

Depth of focus \equiv

Equal circles of confusion

Extreme planes: near and far

$$\frac{c}{a} = \frac{d'_f}{z'_f} = \frac{s' - z'_f}{z'_f}$$

$$\frac{c}{a} = \frac{d'_n}{z'_n} = \frac{z'_n - s'}{z'_n}$$
Depth of Focus [Image Space]

Depth of focus \equiv

Equal circles of confusion

\[
\frac{1}{z'_f} = \frac{1}{s'} \left(1 + \frac{c}{a} \right) \quad \frac{1}{z'_n} = \frac{1}{s'} \left(1 - \frac{c}{a} \right)
\]

\[
\frac{1}{z'_f} + \frac{1}{z'_n} = 2 \frac{1}{s'}
\]

\[
\frac{1}{z'_f} - \frac{1}{z'_n} = \frac{2c}{a} \frac{1}{s'}
\]

Depth of Field [Object Space]

Depth of field \equiv

Equal circles of confusion

\[
\frac{1}{z_n} + \frac{1}{z_f} = 2 \frac{1}{s}
\]

\[
\frac{1}{z_n} - \frac{1}{z_f} = \frac{2c}{a} \left(\frac{1}{f} - \frac{1}{s} \right) = \frac{2c}{a} \frac{1}{f}
\]
Hyperfocal Distance

When

\[\frac{1}{z_n} - \frac{1}{z_f} = \frac{2c}{a} \frac{1}{f} = 2 \frac{cN}{f^2} = \frac{2}{H} \]

\[N = \frac{a}{f} \]

\[\frac{1}{z_n} + \frac{1}{z_f} = 2 \frac{1}{s} \]

When

\[s \rightarrow H \Rightarrow z_n = \frac{H}{2}, z_f = \infty \]

H is the hyperfocal distance

Factors Affecting DOF

\[\frac{1}{H} = \frac{cN}{f^2} \]
Exposure

Image Irradiance

\[E = \int_{\Omega} L \cos \theta \, d\omega = L \pi \sin^2 \theta = L \frac{\pi}{4} \left(\frac{a}{f} \right)^2 \]
Uniform Area Source

\[E(x) = \int_{\Omega^2} L \cos \theta \, d\omega \]
\[= L \int_{\Omega} \cos \theta \, d\omega \]
\[= L \tilde{\Omega} \]

Uniform Disk Source

Geometric Derivation

\[\tilde{\Omega} = \pi \sin^2 \alpha \]

Algebraic Derivation

\[\tilde{\Omega} = \int_{1}^{\cos \alpha} \int_{0}^{2\pi} \cos \theta \, d\phi \, d\cos \theta \]
\[= 2\pi \left[\frac{\cos^2 \theta}{2} \right]_{1}^{\cos \alpha} \]
\[= \pi \sin^2 \alpha \]
\[= \pi \frac{r^2}{r^2 + h^2} \]
Relative Aperture or F-Stop

\[a = \frac{f}{N} \]

F-Number and exposure:

\[E = L \pi \frac{1}{4 N^2} \]

F-stops: 1.4 2 2.8 4.0 5.6 8 11 16 22 32 45 64
1 stop doubles exposure

Camera Exposure

Exposure \[H = E \times T \]

Exposure overdetermined

Aperture: f-stop - 1 stop doubles \(H \)
Decreases depth of field

Shutter: Doubling the open time doubles \(H \)
Increases motion blur
Aperture vs Shutter

From London and Upton

Field of View
Field of View

From London and Upton
Field of View

Field of view

Redrawn from Kingslake, *Optics in Photography*

\[
\tan \left(\frac{\text{fov}}{2} \right) = -\frac{\text{filmsize}}{f}
\]

Types of lenses

- **Normal** 26°

 Film diagonal ~ focal length

- **Wide-angle** 75-90°

- **Narrow-angle** 10°