Monte Carlo 3

Earlier lectures

- Monte Carlo I: integration using randomness
- Monte Carlo II: variance reduction
- Basic signal processing and sampling

Today

- Discrepancy and Quasi-Monte Carlo
- Low-discrepancy constructions
- Efficient implementation
Equi-Areal Disk Sampling

\[\xi_i \in [0, 1)^2 \]

\[\theta = 2\pi \xi_1 \]

\[r = \sqrt{\xi_2} \]
Equi-Areal Disk Sampling

\[\xi_i \in [0, 1)^2 \]

\[\theta = 2\pi \xi_1 \]

\[r = \sqrt{\xi_2} \]
Uniform Hemisphere Sampling

\[(\xi_1, \xi_2) \rightarrow (\sqrt{1 - \xi_1^2} \cos(2\pi \xi_2), \sqrt{1 - \xi_1^2} \sin(2\pi \xi_2), \sqrt{1 - \xi_1^2})\]

\[p(\omega) = \frac{1}{2\pi}\]
Uniform Hemisphere Sampling

\[p(\omega) = \frac{1}{2\pi} \]
Cosine-Weighted Hemisphere

\[\theta = 2\pi \xi_1 \]
\[r = \sqrt{\xi_2} \]
\[(x, y, z) = (r \sin \theta, r \cos \theta, \sqrt{1 - r^2}) \]

\[p(\omega) = \frac{\cos \theta}{\pi} \]
Four 2D Point Sets
Point Set Evaluation: Discrepancy

\[\Delta(x, y) = \frac{n(x, y)}{N} - xy \]

\[A = xy \]

\(n(x, y) \) number of samples in \(A \)

\[D_N = \max_{x,y} |\Delta(x, y)| \]
Discrepancy

Larscher-Pillichshammer Stratified Random
Discrepancy

Larscher-Pillichshammer Stratified Random
Discrepancy

Larscher-Pillichshammer 0.041
Stratified 0.081
Random 0.148
Low-Discrepancy Definition

An (infinite) sequence of n samples in dimension d is low discrepancy if:

$$D_n = O \left(\frac{(\log n)^d}{n} \right)$$

A (finite) set of n samples in dimension d is low discrepancy if:

$$D_n = O \left(\frac{(\log n)^{d-1}}{n} \right)$$
Koksma-Hlawka inequality:

\[
\left| \frac{1}{N} \sum_{i=0}^{N-1} f(X_i) - \int f(x) \, dx \right| \leq V(f) D_N
\]

\[
V(f) = \int \left| \frac{\delta f}{\delta x} \right| \, dx
\]
although error bounded as: \[|e| \leq V(f)D_N \]

not a tight bound!

even worse, \(V(f) \) is sometimes unbounded

further, can use this inequality to show that QMC convergence is:

\[\sim \frac{(\log N)^d}{N} \]

so, \(d \) must be small and \(N \) large to beat MC
Low Discrepancy vs. Monkey Eye Eye

Monkey Eye Cone Distribution

Low Discrepancy Point Set
Measuring Point Set Quality

Some problems with low discrepancy

- Anisotropic: rotating the points changes discrepancy
- Not shift-invariant: similarly for translation

In general, can have low discrepancy yet still have points clumped together
Low-Discrepancy Sequences
The Radical Inverse

Consider the digits of a number \(n \), expressed in base \(b \)

\[
n = \sum_{i=1}^{\infty} d_i b^{(i-1)}
\]

e.g. for \(n = 6 \) in base 2, \(n=110_2 \), and

\[
d_1 = 0, d_2 = 1, d_3 = 1, d_i = 0
\]

The radical inverse mirrors the digits around the decimal:

\[
\Phi_2(6) = 0.011_2 = 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 0.375
\]

\[
\Phi_b(n) = \sum_{i=1}^{\infty} d_i b^{-i}
\]
1D Low Discrepancy: van der Corput

<table>
<thead>
<tr>
<th>n</th>
<th>$\Phi_2(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
1D Low Discrepancy: van der Corput

<table>
<thead>
<tr>
<th>n</th>
<th>$\Phi_2(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
1D Low Discrepancy: van der Corput

<table>
<thead>
<tr>
<th>n</th>
<th>$\Phi_2(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
1D Low Discrepancy: van der Corput

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\Phi_2(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

![Diagram showing points on a number line]
1D Low Discrepancy: van der Corput

<table>
<thead>
<tr>
<th>n</th>
<th>$\Phi_2(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The table and diagrams illustrate the van der Corput sequence for $\Phi_2(n)$. Each value represents the corresponding point in the sequence. The diagrams show the progression of points as n increases.
Efficient Base 2 Radical Inverse

Recall the definition of the digits of a number in base b:

$$n = \sum_{i=1}^{\infty} d_i b^{(i-1)}$$

Thanks to computer binary representation, these digits are easily extracted:

```c
int DigitBase2(uint32_t n, int i) {
    return (n & (1 << (i-1))) ? 1 : 0;
}
```

In arbitrary bases, we’re not so lucky:

```c
int DigitBaseB(uint32_t n, int i, int b) {
    n /= ipow(b, i-1);
    return n % b;
}
```
Efficient Base 2 Radical Inverse

Assume a fixed number of bits (say 32):

\[\Phi_b(n) = \sum_{i=1}^{32} d_i b^{-i} \]

We have the sum:

\[d_1 2^{-1} + d_2 2^{-2} + \cdots + d_{32} 2^{-32} \]

Pull out a factor of \(2^{-32} \):

\[2^{-32} \left(d_1 2^{31} + d_2 2^{30} + \cdots + d_{32} \right) \]

Can also express in terms of bit shifts:

\[2^{-32} \left((d_1 \ll 31) + (d_2 \ll 30) + \cdots + d_{32} \right) \]
Efficient Base 2 Radical Inverse

\[2^{-32}((d_1 << 31) + (d_2 << 30) + \cdots + d_{32}) \]

We have the digits already in the bits of \(n \)

\[n = \sum_{i=1}^{\infty} d_i b^{(i-1)} \]

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

So

- Reverse the bits
- Multiply by \(2^{-32} \)
Reversing Bits in Parallel

```c
uint32_t ReverseBits(uint32_t n) {

    n = (n << 16) | (n >> 16);

    n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);

    n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);

    n = ((n & 0x33333333) << 2) | ((n & 0xc0c0c0c0) >> 2);

    n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
    return n;
}
```
uint32_t ReverseBits(uint32_t n) {
 n = (n << 16) | (n >> 16);

 n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);

 n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);

 n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);

 n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
 return n;
}
Reversing Bits in Parallel

```c
uint32_t ReverseBits(uint32_t n) {

    n = (n << 16) | (n >> 16);  
    n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);  
    n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);  
    n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);  
    n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);  
    return n;
}
```
uint32_t ReverseBits(uint32_t n) {
 n = (n << 16) | (n >> 16);
 n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);
 n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);
 n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);
 n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
 return n;
}
Reversing Bits in Parallel

```c
uint32_t ReverseBits(uint32_t n) {
    n = (n << 16) | (n >> 16);
    n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);
    n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);
    n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);
    n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
    return n;
}
```
Reversing Bits in Parallel

```c
uint32_t ReverseBits(uint32_t n) {
    n = (n << 16) | (n >> 16);
    n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);
    n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);
    n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);
    n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
    return n;
}
```
float RadicalInverse2(uint32_t v) {
 v = ReverseBits(v);
 const float Inv2To32 = 1.f / (1ull << 32);
 return v * Inv2To32;
}

uint32_t ReverseBits(uint32_t n) {
 n = (n << 16) | (n >> 16);
 n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);
 n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);
 n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);
 n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
 return n;
}
The Halton Sequence

Low discrepancy sequence

- Arbitrary number of dimensions
- Arbitrary number of points

\[(\Phi_{b_1}(n), \Phi_{b_2}(n), \Phi_{b_3}(n), \ldots) \]

where the bases for each of the dimensions are relatively prime
The Halton Sequence

One caution: 2D projections of higher bases may not be great

- The overall pattern in remains low-discrepancy over all dimensions, though

$\Phi_{23}(n), \Phi_{29}(n)$
The Hammersley Point Set

If the number of points N is known in advance, set one dimension to n/N

$$(n/N, \Phi_{b_1}(n), \Phi_{b_2}(n), \ldots)$$

Slightly lower discrepancy than Halton
Efficient Radical Inverse, base $b \neq 2$

Integer division by a constant can be done with multiplies and shifts

\[
q = \left\lfloor \frac{2^{32} + 2 \frac{n}{3}}{2^{32}} \right\rfloor = \left\lfloor \frac{n}{3} + \frac{2n}{3 \times 2^{32}} \right\rfloor
\]

\[
= \left\lfloor \frac{n}{3} \right\rfloor \text{ if } n < 2^{32}
\]

```c
unsigned int div3(unsigned int v) {
    const int64_t magic = 0x55555556;
    return (magic * v) >> 32;
}
```
Integer division by a constant can be done with multiplies and shifts

```c
int div(int v, int d) {
    return v / d;
}
// ...
div(v, 3);
```

```c
unsigned int div3(unsigned int v) {
    const int64_t magic = 0x555555556;
    return (magic * v) >> 32;
}
```

```c
# ...
iidivl %ecx
# ...
```

```c
# ...
imulq $1431655766, %rax, %rax; # imm = 0x55555556
shrq$32, %rax
# ...
```

~7x faster
Generator Matrices

Given a base b and a matrix C, define:

$$c(n) = (b^{-1}, b^{-2}, \ldots, b^{-m}) C \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{pmatrix}$$

- where d_i are the base-b digits of n
- and arithmetic is done over the ring \mathbb{Z}_b
- For our purposes, just do everything “mod b”

This generates a set of b^m points

 Appropriately-chosen C matrices generate various low-discrepancy point sets
Generator Matrices

We’ll focus only on $b=2$, which allows particularly efficient implementation

$$c(n) = (2^{-1}, 2^{-2}, \ldots, 2^{-m}) C \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{pmatrix}$$
Sobol’ Point Sets

Sobol’ first showed how to find generator matrices for LD point sets in base 2

- Can scale low-discrepancy samples in 1000s of dimensions
32 2D Sobol’ Points
Elementary Intervals (1x64)
Elementary Intervals (2x32)
Elementary Intervals (4x8)
Elementary Intervals (8x4)
Elementary Intervals (32x1)
Uniform Random Samples, n=16
MSE 0.00227214
Stratified Samples, n=16
MSE 0.00208727
Low Discrepancy Samples, $n=16$
MSE 0.00201494
Uniform Random Samples, n=16
MSE 0.000421827
Stratified Samples, n=16
MSE 0.000253177
Low Discrepancy Samples, n=16
MSE 0.000164011
In addition to satisfying general stratification properties, power-of-two length subsequences are well-distributed with respect to each other.
(0,2)-sequences

In addition to satisfying general stratification properties, power-of-two length subsequences are well-distributed with respect to each other.
(0,2)-sequences

In addition to satisfying general stratification properties, power-of-two length subsequences are well-distributed with respect to each other.
(0,2)-sequences

In addition to satisfying general stratification properties, power-of-two length subsequences are well-distributed with respect to each other.
Pixel * Light Sampling
Pixel * Light Sampling
Pixel * Light Sampling
Maximized Minimum Distance

Grünschloß and Keller: exhaustive search over generator matrices

Still stratified over elementary intervals

\[C_6 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \]
Low Discrepancy + Blue Noise

Ahmed et al. 2016
Sobol’ vs Low Discrepancy Blue Noise

Sobol’

LDBN

Power Spectra
(Live demo)
Sampling Motion Blur + Defocus

Random
MSE 3.42e-4

(0,2)-nets
MSE 2.07e-4

Halton
MSE 3.02e-4

Sobol’
MSE 1.90e-4
Efficient Generator Matrix Implementation

How do we do this multiplication efficiently?

■ Consider e.g. m=32 for regular 32-bit integers...

\[
\begin{pmatrix}
 c_{1,1} & c_{1,2} & \cdots & c_{1,m} \\
 c_{2,1} & \ddots & & \vdots \\
 \vdots & & \ddots & \vdots \\
 c_{m,1} & c_{m,2} & \cdots & c_{m,m}
\end{pmatrix}
\begin{pmatrix}
 d_1 \\
 d_2 \\
 \vdots \\
 d_n
\end{pmatrix}
\]

\[
= d_1 \begin{pmatrix}
 c_{1,1} \\
 c_{2,1} \\
 \vdots \\
 c_{m,1}
\end{pmatrix} + d_2 \begin{pmatrix}
 c_{1,2} \\
 c_{2,2} \\
 \vdots \\
 c_{m,2}
\end{pmatrix} + \cdots + d_m \begin{pmatrix}
 c_{1,m} \\
 c_{2,m} \\
 \vdots \\
 c_{m,m}
\end{pmatrix}
\]
Efficient Generator Matrix Implementation

Recall that we’re doing all of this arithmetic mod 2

- All values are either 0 or 1...

\[
d_1 \begin{pmatrix}
 c_{1,1} \\
 c_{2,1} \\
 \vdots \\
 c_{m,1}
\end{pmatrix} + d_2 \begin{pmatrix}
 c_{1,2} \\
 c_{2,2} \\
 \vdots \\
 c_{m,2}
\end{pmatrix} + \cdots d_m \begin{pmatrix}
 c_{1,m} \\
 c_{2,m} \\
 \vdots \\
 c_{m,m}
\end{pmatrix}
\]

- What logical ops are + and *, mod 2, equivalent to?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Efficient Generator Matrix Implementation

Add (XOR) columns if corresponding digit is one.

```c
// C[] holds columns of the generator matrix
float GenMatA(uint32_t n, const uint32_t C[32]) {
    uint32_t bits = 0;
    for (int i = 0; i < 32; ++i) {
        if (n & (1 << i) != 0)
            bits ^= C[i];  // 32 ADDs, mod 2
    }
    const float Inv2To32 = 1.f / (1ull << 32);
    return ReverseBits(bits) * Inv2To32;
}
```
Efficient Generator Matrix Implementation

Better: stop when n=0

```c
float GenMatB(uint32_t n, const uint32_t C[32]) {
    uint32_t bits = 0, i = 0;
    while (n != 0) {
        if (n & 1)
            bits ^= C[i];
        n >>= 1;
        ++i;
    }
    const float Inv2To32 = 1.f / (1ull << 32);
    return ReverseBits(bits) * Inv2To32;
}
```
Efficient Generator Matrix Implementation

Avoid the bit reverse by reversing the columns of the matrix

```c
float GenMatB(uint32_t n, const uint32_t C[32]) {
    uint32_t bits = 0, i = 31;
    while (n != 0) {
        if (n & 1)
            bits ^= C[i];
        n >>= 1;
        --i;
    }
    const float Inv2To32 = 1.f / (1ull << 32);
    return bits * Inv2To32;
}
```
Even Faster Evaluation with Grey Codes

Grey codes: permutation of integers within blocks of size 2^n such that adjacent values only differ in a single bit

Very simple to compute:

```c
int GreyCode(int v) {
    return v ^ (v >> 1);
}
```

<table>
<thead>
<tr>
<th>n</th>
<th>binary</th>
<th>Grey code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>101</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1100</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Incremental Evaluation with Grey Codes

If \(g() \) is the Grey code function, and we have \(c(g(n-1)) \), what is \(c(g(n)) \)?

- We know that \(g(n-1) \) and \(g(n) \) differ in a single bit (call it \(b \))

\[
c(g(n)) = c(g(n - 1)) + \begin{pmatrix} c_{b,1} \\ c_{b,2} \\ \vdots \\ c_{b,m} \end{pmatrix}
\]

Or

\[
c(g(n)) = c(g(n - 1)) - \begin{pmatrix} c_{b,1} \\ c_{b,2} \\ \vdots \\ c_{b,m} \end{pmatrix}
\]
Good News In Base 2

Both + and - are equivalent to XOR in \mathbb{Z}_2

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$$c(g(n)) = c(g(n - 1)) \pm \begin{pmatrix} C_{b,1} \\ C_{b,2} \\ \vdots \\ C_{b,m} \end{pmatrix}$$

```plaintext
next = prev ^ C[changedBit]
```
Even Faster Evaluation with Grey Codes

Which Bit Changed?

<table>
<thead>
<tr>
<th>n</th>
<th>binary</th>
<th>Grey code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>101</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1100</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- # of trailing 0s in the binary representation of n

Even Faster Evaluation with Grey Codes

Final implementation is super efficient

```c
uint32_t CIncremental(uint32_t n,
    uint32_t prev, const uint32_t C[32]) {
    int changedBit = CountTrailingZeros(n);
    return prev ^ C[31-changedBit];
}
```

```assembly
bsfl  %edi, %eax
xorl  $31, %eax
xorl  (%rdx,%rax,4), %esi
```

Most ISAs have an instruction to count trailing zeros