Participating Media & Vol. Scattering

Applications

- Clouds, smoke, water, ...
- Subsurface scattering: paint, skin, ...
- Scientific/medical visualization: CT, MRI, ...

Topics

- Absorption and emission
- Scattering and phase functions
- Volume rendering equation
- Homogeneous media
- Ray tracing volumes
Absorption cross-section: $\sigma_a(x)$

Probability of being absorbed per unit length
Transmittance

\[dL(x, \omega) = -\sigma_a(x) L(x, \omega) \, ds \]

\[\frac{dL(x, \omega)}{L(x, \omega)} = -\sigma_a(x) \, ds \]

\[\ln L(x + s \omega, \omega) = -\int_0^s \sigma_a(x + s' \omega) \, ds' = -\tau(s) \]

Optical distance or depth

\[\tau(s) = \int_0^s \sigma_a(x + s' \omega) \, ds' \]

Homogenous media: constant \(\sigma_a \)

\[\sigma_a \rightarrow \tau(s) = \sigma_a s \]
Transmittance and Opacity

\[dL(x, \omega) = -\sigma_a(x)L(x, \omega) \, ds \]
\[\frac{dL(x, \omega)}{L(x, \omega)} = -\sigma_a(x) \, ds \]
\[\ln L(x + s\omega, \omega) = -\int_0^s \sigma_a(x + s'\omega) \, ds' = -\tau(s) \]
\[L(x + s\omega, \omega) = e^{-\tau(s)}L(x, \omega) = T(s)L(x, \omega) \]

Transmittance

\[T(s) = e^{-\tau(s)} \]

Opacity

\[\alpha(s) = 1 - T(s) \]
Scattering cross-section: $\sigma_s(x)$

Probability of being scattered per unit length
Extinction

\[dL(x, \omega) = -\sigma_t(x)L(x, \omega) \, ds \]

Total cross-section

\[\sigma_t = \sigma_a + \sigma_s \]

Albedo

\[W = \frac{\sigma_s}{\sigma_t} = \frac{\sigma_s}{\sigma_a + \sigma_s} \]
White and Black Clouds

From Greenler, Rainbows, halos and glories
\[S(x, \omega) = \sigma_s(x) \int_{S^2} p(\omega' \rightarrow \omega) L(x, \omega') \, d\omega' \]

Phase function \(p(\omega' \rightarrow \omega) \)
Phase Functions

Phase angle \(\cos \theta = \omega \cdot \omega' \)

Phase functions (from the phase of the moon)

1. Isotropic \(p(\cos \theta) = \frac{1}{4\pi} \)

2. Rayleigh \(p(\cos \theta) = \frac{3 \left(1 + \cos^2 \theta \right)}{4 \lambda^4} \)
 - Molecules

...
Blue Sky = Red Sunset

From Greenler, Rainbows, halos and glories
Coronas and Halos

Moon Corona

Sun Halos

From Greenler, "Rainbows, halos and glories"
Henyey-Greenstein Phase Function

Empirical phase function

\[
p(\cos \theta) = \frac{1}{4\pi} \frac{1 - g^2}{\left(1 + g^2 - 2g \cos \theta\right)^{3/2}}
\]

\[
2\pi \int_0^{\infty} p(\cos \theta) \cos \theta \, d(\cos \theta) = g
\]

\(g\): average phase angle

\(g = -0.3\)

\(g = 0.6\)
Properties of Phase Functions

Phase Function $p(\omega' \rightarrow \omega)$

Properties:

1. Reciprocity $p(\omega \rightarrow \omega') = p(\omega' \rightarrow \omega)$

2. Energy conserving $\int_{S^2} p(\omega' \rightarrow \omega) d\omega' = 1$
The Volume Rendering Equation

Integro-differential equation:

\[
\frac{\partial L(p, \omega)}{\partial s} = -\sigma_t L(p, \omega) + S(p, \omega)
\]

Integro-integral equation:

\[
L(p, \omega) = \int_0^\infty T(p + s'\omega) S(p + s'\omega, \omega) \, ds'
\]

Transmission: attenuation due to absorption and out-scattering

\[
e^{-\int_0^{s'} \sigma_t(p + s''\omega) \, ds''}
\]

Source: emission and in-scattering

\[
\sigma_s(p + s'\omega) \int_{S^2} p(\omega' \rightarrow \omega) \, L(p + s'\omega, \omega') \, d\omega'
\]
Simple Atmosphere Model

Assumptions

Homogenous media

Constant source term (airlight)

\[
\frac{\partial L(s)}{\partial s} = -\sigma_t L(s) + S
\]

\[
L(s) = \left(1 - e^{-\sigma_t s}\right)S + e^{-\sigma_t s}C
\]

Applications: Fog and haze
The Sky

From Greenler, Rainbows, halos and glories

Plate 5-16. Fisheye view of clear sky at the South Pole. (Photographed by the author)

Plate 5-17. View of slightly hazy sky in Wisconsin. (Photographed by the author)
Atmospheric Perspective

From Greenler, Rainbows, halos and glories
Direct Lighting with Shadows

From Minneart, "Light in the Open Air"

pbrt: Spot-Lit ball in fog
Volume Representations

Scalar volume grids

+ flexible – useful for rendering results from physical simulation / measured data
- fixed resolution, may have high memory requirements

Procedural models

+ minimal storage, infinite detail
- can be hard to control
Interpolate Scalar Volume Grids

Interpolation \(v(s_l) = \text{trilinear}(v, i, j, k, x(s_l)) \)

Map scalars to optical properties \(\sigma_s(v), \sigma_a(v) \)
Ray Marching

\[T(s) = e^{-\tau(s)} \]

\[\tau(s) = \int_0^s \sigma_t(x + s' \omega) \, ds' \]

Evaluate by stepping along the ray

Monte Carlo not necessary in 1D

\[\tau(s) \approx \frac{s}{N} \sum_i^N \sigma_t(x_i) \]

\[x_i = x + \frac{i + 0.5}{N} \omega \]
Ray Marching

\[L(x, \omega) = \int_0^s T(x + s', \omega) S(x + s'\omega, \omega) \, ds' \]

Conceptually straightforward:

March along the ray ...

\[L(x, \omega) \approx \frac{s}{N} \sum_{i=1}^{N} T(x_i)S(x_i, \omega) \]

\(T(x_i) \) can be computed incrementally from the product of \(T(x_{i-1}) \) and the additional attenuation between \(x_{i-1} \) and \(x_i \).
Direct Illumination

\[\sigma_s(p') \int_{S^2} p(\omega' \rightarrow \omega) L_d(p', \omega') \, d\omega' \]

Similar to direct illumination on a surface

- Sample directions using phase distribution
- Sample light sources

Can use multiple importance sampling to combine both methods
Direct Illumination

$$\sigma_s(p') \frac{1}{N} \sum_{i=1}^{N} \frac{p(\omega_i \rightarrow \omega) L_d(p', \omega_i)}{p(\omega_i)}$$

Computing L_d is expensive

- Not just a shadow ray
- Need to compute transmittance between p' and the light source
Direct Illumination / Single Scattering
Volumetric Path Tracing

Include indirect illumination in source term:

\[S(x, \omega) = \sigma_s(x) \int_{S^2} p(\omega' \rightarrow \omega) L(x, \omega') \, d\omega' \]

\[L(x, \omega') = L_d(x, \omega') + L_i(x, \omega') \]

Compute direct lighting as before
- Sample incident direction using phase distribution
- Trace the ray recursively

\[L_i(x, \omega') \approx \frac{p(\omega'' \rightarrow \omega') L(x, \omega'')}{p(\omega'')} \]

Uniform spherical directions: \(p(\omega'') = \frac{1}{4\pi} \)
Path Tracing / Multiple Scattering
Volumetric Metropolis Light Transport [Pauly et al. 2000]
Volumetric Metropolis Light Transport [Pauly et al. 2000]
Volume Rendering Examples

From Karl Heinz Hoehne

From Marc Levoy

© 1995 IMDD University of Hamburg, Germany

Pat Hanrahan / Matt Pharr, Spring 2017