Real-Time Ray Tracing and Denoising

Acceleration structures for dynamic scenes

Denoising

- Bilateral, joint-bilateral filters
- CNN-based denoising

Many-Light Sampling on the GPU

- Resampled importance sampling
- Reservoir sampling
Battlefield V
(EA/DICE)
Real-Time vs. Offline Rendering

Different constraints:

- Offline: render until quality achieved
- Real-time: render until time runs out

Implications:

- Performance eval: average vs. max time
- Many fewer rays/image in real-time
Implications: Acceleration Structures

Time to build BVH/kd-tree matters much more for real-time ray tracing

■ For real-time, can allow a few ms / frame:
 e.g. @10M tris, 60fps, need 600M tris / sec.

■ pbrt BVH construction: ~2.5M tris / second

➡ Hierarchy construction efficiency really matters

➡ Hierarchy quality is (a little) less important
Battlefield V
(EA/DICE)
Two-level Acceleration Structures

Top-level acceleration structure

Bottom-level acceleration structures
Refit BVH When Objects Move

[Kopta et al. 2012]
Denoising
White Room, 4096 pixel samples
White Room, 1 pixel sample
White Room, 2 pixel samples
White Room, 4 pixel samples
White Room, 8 pixel samples
White Room, 16 pixel samples
White Room, 32 pixel samples
White Room, 64 pixel samples
White Room, 128 pixel samples
White Room, 256 pixel samples
White Room, 512 pixel samples
White Room, 1024 pixel samples
Zoom-in by Bookshelf

1 sample

4 samples

16 samples

64 samples

256 samples

1024 samples
Gaussian Filter

\[f(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]

Spatial Domain

Frequency Domain
64 pixel samples
19x19 Gaussian Blur
White Room, 4096 pixel samples
Separate Illumination & Reflection

Hemispherical directional reflectance:

\[\rho_{hd}(\omega_o) = \int_{H^2} f_r(\omega_i \rightarrow \omega_o) \cos \theta_i \, d\omega_i \]

Recall the reflection equation:

\[L_o(\omega_o) = \int_{H^2} f_r(\omega_i \rightarrow \omega_o) L_i(\omega_i) \cos \theta_i \, d\omega_i \]

Ratio approximates incident radiance:

\[
\frac{L_o(\omega_o)}{\rho_{hd}(\omega_o)} = \frac{\int_{H^2} f_r(\omega_i \rightarrow \omega_o) L_i(\omega_i) \cos \theta_i \, d\omega_i}{\int_{H^2} f_r(\omega_i \rightarrow \omega_o) \cos \theta_i \, d\omega_i} \approx \text{avg } L_i
\]
Hemi-Directional Reflectance (Albedo)
White Room, 64 pixel samples
Final Image / Albedo ~ Illumination
General Pipeline

Noisy image

Noisy Illumination

Denoising

Denoised Illumination

Denoised image

Albedo

Albedo
Gaussian Blurred Illumination
Blurred Illumination * Albedo
White Room, 4096 pixel samples
Ideal Denoising Filters (via Brute Force)
Ideal Denoising Filters (via Brute Force)
Better Filter: Bilateral

\[
G_p(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{d((0, 0), (x, y))^2}{2\sigma^2}}
\]

\[
G_s(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}
\]

e.g. \(d(p, p') = |I(p) - I(p')|\)

[Durand and Dorsey 2002]
Better Filter: Bilateral

[Durand and Dorsey 2002]

CS348b Lecture 14
Even Better Filter: Joint Bilateral

Include additional, non-visible features in the filter

- Pixel depth
- Surface normal
- BRDF features—roughness, ...
- Object id
Surface Normal
Camera Space “z”
Approximating Local Planar Surface

Given camera space z at a pixel, can approximate the local planar surface as:

$$z(\Delta x, \Delta y) \approx z + \Delta x \frac{\partial z}{\partial x} + \Delta y \frac{\partial z}{\partial y}$$

Where $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are partial derivatives of z in terms of pixel coordinates (x, y).

Given a depth z' at a nearby pixel, can compute distance from planar approximation,

$$z' - z(\Delta x, \Delta y)$$
\(\frac{dz}{dx} \)
Joint Bilateral Filter Function

\[G = G_s \, G_p \, G_n \, G_z \]

Spatial: \(G_s(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \)

Intensity: \(G_p(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{d((0,0),(x,y))^2}{2\sigma^2}} \)

Normal difference: \(G_n(x, y) = \max(\vec{n}(x, y) \cdot \vec{n}(0,0), 0)^n \)

Depth difference: \(G_z(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(\hat{z}(x,y)-z(0,0))^2}{2\sigma^2}} \)

\[\quad \text{with} \quad \hat{z}(\Delta x, \Delta y) \approx z + \Delta x \frac{\partial z}{\partial x} + \Delta y \frac{\partial z}{\partial y} \]
About all those sigmas...

Pixel intensity contribution

\[G_p(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{d((0,0),(x,y))^2}{2\sigma^2}} \]

should be based on pixel’s variance

Uniform variance:

\[d(p, p')^2 = \frac{\max(0, (I(p) - I(p'))^2 - 2\bar{\sigma}^2)}{\epsilon + k^2 2\bar{\sigma}} \]

Non-uniform variance:

\[d(p, p')^2 = \frac{\max(0, (I(p) - I(p'))^2 - (\text{Var}[p] + \min(\text{Var}[p], \text{Var}[p']))}{\epsilon + k^2 (\text{Var}[p] + \text{Var}[p'])} \]
Direct Illumination Sample Variance
Indirect Illumination Sample Variance
Filtered Direct Variance
Filtered Indirect Variance
Revised Pipeline

Noisy direct → Albedo → Noisy indirect

Denoising → Albedo → Denoising

Denoised direct + Albedo = Denoised indirect

Albedo
Multi-Level Filtering: À-Trous

Want wide filter kernels to eliminate noise

- Recall Gaussian 19x19 was still blotchy

Wide kernels are expensive...

Multi-scale filtering:

[Dammertz et al. 2010]
Direct Lighting
Direct Lighting / Albedo
One Iteration
Two Iterations
Three Iterations
Filtered Direct Lighting
Indirect Lighting (64 samples)
Indirect Lighting / Albedo
Filtered Indirect Lighting / Albedo
Filtered Indirect Lighting
64 samples per pixel, MSE = 3.44
64 denoised samples, MSE = 2.16
Reference (4096 samples)
Close-ups

64 samples

4096 samples

64 samples, denoised
Temporal Filtering

Spatiotemporal Variance-Guided Filtering [Schied et al. 2017]
Summary

Estimate variance, then blur it

■ Using which filter? Blur how much?

Choose additional features for joint filter

■ Which ones? Measure distance how?
 How much weight does each one get?

Blur illumination using joint filter

■ Which filter? Blur how much?

Multiply filtered illumination by albedo
Learning Filter Parameters

3-layer fully connected MLP
Computes per-pixel filter parameters

[Kalantari et al. 2015]
Deep Denoising (NVIDIA)

Features: illumination, normals, depth, roughness

3.2M trainable parameters

Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder
Results

(a) 1spp noisy input (d) Recurrent autoencoder (e) Reference
Denoising (Pixar/Disney)

Deep CNN, 8 layers, 100 5x5 kernels
Features: illumination, normals, depth, and their variances

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings
Kernel Prediction

Network generates a stencil of 21x21 filter weights at each pixel

- Normalized to sum to one (~softmax)
- Weights are then applied to the noisy image

Advantages:

- Result always in convex hull of input
- Better scale invariance (HDR)
- 5-6x faster convergence than direct reconstruction
Results

Ours	Input (32 spp)	Ours	Ref. (1K-4K spp)
relative ℓ_2 | 19.21e-3 | 1.16e-3 |
1 – SSIM | 0.354 | 0.032 |
64 samples per pixel, MSE = 3.44
64 CNN-denoised samples, MSE = 2.38
Reference (4096 samples)
Zoom-ins: CNN denoising

64 samples

4096 samples

64 samples, denoised
ReSTIR

(Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, Bitterli et al., SIGGRAPH 2020)
Resampled Importance Sampling (RIS)

Generate M samples $x_i \sim p$

Define sample weights $w(x) = \frac{\hat{p}(x)}{p(x)}$

Choose a sample z from x_i with probability $\frac{w(z)}{\sum_{i=1}^{M} w(x_i)}$

RIS estimator: $\frac{f(z)}{\hat{p}(z)} \cdot \left(\frac{1}{M} \sum_{i=1}^{M} \frac{\hat{p}(x_i)}{p(x_i)} \right)$
RIS for Product Sampling

RIS generates a sample that is approximately from \(\hat{p} \)'s distribution

Consider \(p \sim L_e \) and \(\hat{p} = f_r L_e \) with \(f = f_r L_e V \):

\[
\begin{align*}
w(x) & \propto \frac{f_r L_e}{L_e} = f_r & \quad \frac{f}{\hat{p}} = V
\end{align*}
\]
“Approximately”?

\[\hat{p} \propto f_r L_e \]
\[M = \infty \]
\[p \propto L_e \]
\[M = 1 \]
Reservoir Sampling

Sample reservoir;
int numConsidered = 0;

while (moreSamples) {
 sample = getNextSample();
 numConsidered += 1;
 if (randomFloat() < 1 / numConsidered)
 reservoir = sample;
}

Sample reservoir;
float sumWeights = 0;

while (moreSamples) {
 sample, weight = getNextSample();
 sumWeights += weight;
 if (randomFloat() < weight / sumWeights)
 reservoir = sample;
}
Weighted Reservoir-Based RIS

For M samples

■ Generate sample $x_i \sim p$
■ Compute weight $w(x_i) = \hat{p}(x_i)/p(x_i)$
■ Update weight sum: $w_s = w_s + w(x_i)$
■ Randomly keep sample with prob. $w(x_i)/w_s$

Evaluate estimator using the reservoir sample z:

$$\frac{f(z)}{\hat{p}(z)} \cdot \left(\frac{1}{M} w_s \right)$$
Merging Reservoirs

struct Reservoir {
 Sample sample;
 float sumWeights;
 int M;

 void merge(Reservoir other) {
 M += other.M;
 pKeepSample = sumWeights / (sumWeights + other.sumWeights);
 if (randomFloat() > pKeepSample)
 sample = other.sample;
 sumWeights += other.sumWeights;
 }
};
Sharing Samples Across Pixels

Keep a small number of independent reservoirs at each pixel

At each pixel, choose k neighbor pixels

- Merge reservoir with neighbor’s reservoir
- Get equivalent of kM samples

Repeat n times

- Get equivalent of $k^n M$ samples(!!)
Temporal Reuse

Random samples (from \(p(x) \))

Talbot-style RIS

Selected samples used for shading

RIS, pixel \(i-1 \)

RIS, pixel \(i \)

RIS, pixel \(i+1 \)

Spatial RIS over adjacent pixels

Samples reused from last frame

RIS, pixel \(i-1 \)

RIS, pixel \(i \)

RIS, pixel \(i+1 \)

Temporal RIS

Spatial RIS over adjacent pixels