Sampling and Anti-Aliasing

- Frequency vs. Space review
- Sampling Filters
- Integrating methods
- Supersampling
 - Adaptive
 - Jittered
 - Distributed
Frequency vs. Space review

- Neat dualities between Frequency and Spatial domains
 - Convolution \leftrightarrow Multiplication
 - Finite \leftrightarrow Infinite
 - Impulse \leftrightarrow Sine function
 - Boxfunction \leftrightarrow Sinc function

- Sharp edges require infinite extents
 - Cutting off (Windowing) outer range produces wiggles
 - Remember square wave example
 - Sharpness with ringing, or blur without
Sampling Filters

• Generally finite non-zero extent

• Sampling with filters
 – Position filter at sample point
 – Multiply image function by filter
 – Integrate result for sample value

• How to integrate?
 – Easy for constant (box) function
 – Build summing table for separable functions
 – 2d summing table for non-separable functions
 – Tables require rectangular areas
Integrating sampling methods

- Subpixel polygon algorithms (Crow, Catmull, Duff, Abrams et al)
 - Weighted vs. unweighted areas
 - Pixel areas should overlap (complicated)

- Beam tracing (Heckbertt and Hanrahan)
 - Uses notoriously difficult cookie-cutter algorithm

- Cone tracing (Amanatides)
 - Painful cone reflection calculations
 - Hierarchical cones suggested

• Highlights?
Supersampling

• Trace more rays, use higher resolution
 – Expensive

• Adaptive supersampling
 – Trace more rays where needed

• At pixel level
 – Weight with filter function
 – Distribute with filter function

• At image level
 – More samples needed in detailed areas, how?
Adaptive Sampling

- Look at local variance in coarse array of samples
- Take more samples in areas of high variance
- Coarser arrays risk missing small things
- Nonuniform samples require more thought for reconstruction
 - Fit surface to samples to resample for display
Jittered Sampling

- Aliasing vs. Noise
- Film emulsion
- What kind of jitter?
References

• Subpixel polygon algorithms
More References

– Beam, Cone tracing

Even More References

- Adaptive Supersampling

- Jittered Sampling