Accelerated Ray Tracing

- Fast intersection computation
- Spatial Subdivision
- Higher dimensional subdivision
- Memory coherency
Fast intersection computation

- Optimized code
- Spheres
- Bounding boxes
 - Axis aligned
 - Oriented (transform rays - Rubin & Whitted)
- Slabs forming convex hulls
- Hierarchies
 - Higher order objects
 - Object clusters
Spatial Subdivision

- Uniform - Fujimoto
- Multilevel - Jevans
- Hierarchical - Octree (Quadtree)
- BSP tree
- Dealing with multiple hits
Higher Dimensional Spaces

• Space-time for canned animations
 – $S(x,y,z,t)$, coherence wins
• $R^3 \times S^2$ - 5D ray classification
 – Light buffer (scan conversion on faces)
 – Ray classification with limited reach
 – lazy evaluation
• Ray bundling - safety zones
Parallel implementations

• SIMD/Vector machines
 – Karl Sims - Connection Machine
 – Nelson Max - Cray

• MIMD
 – Distribute rays - scene data replication
 – Distribute data - sending rays over interconnect
Memory coherency

• Handling huge scenes - too big for memory
 – Caching in modern architectures
 – Cost of random accesses - cache misses

• Coherent storage in voxels
 – nearby rays hit same objects

• Reordering computation to bundle rays
 – Massive SIMD machine issues
 – Caching performance, from disk
Toward Real-Time Ray Tracing

- Tailored memory allocation
 - a priori knowledge of chunk size, etc.
 - Geometry Cache, Texture Cache
- In-place geometry expansion
 - Higher order surfaces, displacement maps
- Hardware acceleration
 - ART
 - Embedded DRAM
Upcoming lectures

- 4/27 Color - Maureen Stone
- 4/29 Radiosity - Don Greenberg
- 5/4 More Radiosity - Greenberg
References

• Chapter 6 in the Glassner text
More References

