Cloth and Fus Energy Functions

JJfonael Kass

Hair Model

Limp hair: Just a set of springs.

Hair Model

Add body: Angular Springs

$$
E=\frac{1}{2} \sum_{i} k_{i} \theta_{i}^{2}
$$

Hair Model

Alternative: More Linear Springs

Difficulty:
Each spring constant affects both bending and stretching

Discretization

Make sure energy independent of sampling.

Total energy: $\quad E=\frac{1}{2} k \sum\left(l-l_{\text {rest }}\right)^{2}$

Stretch 100% :

$$
E=\frac{1}{2} n k\left(\frac{L}{n}\right)^{2}
$$

Constant energy implies:

$$
k \propto n \quad \text { or } \quad k_{i} \propto \frac{1}{l_{i}}
$$

Note: High sampling --> stiffness

Discretization

Consider a discretized circle.

$$
E=\frac{1}{2} k \sum \theta^{2}
$$

Again, constant energy implies:

$$
k \propto n \quad \text { or } \quad k_{i} \propto \frac{1}{l_{i}}
$$

Clothing

- Start with warp and weft threads.
- Weave them together.
- Add angular springs so threads want to stay perpendicular.

Cloth Properties

Cloth Resists

- Stretching
- Shearing

Warp and Weft directions

 are special.- Bending

A and B will move differently

Rest Mesh Options

Model in 3D

- Clothing already on characters.
- Can directly craft desired 3D shape.
- Annotate warp/weft directions.
- Clothing probably will not locally flatten.

Model in 2D

- Must put clothing on characters
- Hire a tailor to get the pattern right.
- Sew parts together.
- Clothing guaranteed to flatten locally.
- Greater realism.

Non-flat Cloth

Non-flat cloth is strange stuff:

> A baseball with no seams?

Wrinkles give strength?

Clothing cut out of a volume?

Convexities that pop?

Even 4 Triangles are over-constrained:
16 rest angles, 8 rest lengths.
24 constraints on 15 dofs.
Must be consistent!

Stretch (Continuum Version)

$$
(u, v)
$$

$S_{u}=\left\|\frac{\partial \vec{x}}{\partial u}\right\|-1$

\vec{x}
$E=\frac{1}{2} k \int\left(S_{u}^{2}+S_{v}^{2}\right) d u d v$

Shear (Continuum Version)

(u, v)

$$
\theta=\cos ^{-1}\left(\frac{\widehat{\partial \vec{x}}}{\partial u} \cdot \frac{\widehat{\partial \vec{x}}}{\partial v}\right) \quad E=\frac{1}{2} k \int \theta^{2} d u d v
$$

Bend (Continuum Version)

Discretization

Triangle Energy

First, compute the affine transformation T that maps: $T: a \rightarrow c^{\prime}$

$$
\begin{aligned}
& b \rightarrow b^{\prime} \\
& c \rightarrow c^{\prime}
\end{aligned}
$$

Triangle Stretch Energy

Now compute the

$$
S_{u}=\|T(\hat{u})\|-1
$$ stretch energy.

$$
E_{\text {stretch }}=\frac{1}{2} k\left(S_{u}^{2}+S_{v}^{2}\right) A
$$

Triangle Shear Energy

Next compute the

$$
\theta=\cos ^{-1}(T(\hat{u}) \cdot T(\hat{v}))
$$ shear energy.

$$
E_{\text {shear }}=\frac{1}{2} k \theta^{2} A
$$

Triangle Bend Energy

Finally compute the

$$
\mathcal{K}=\frac{\theta}{l_{\text {perp }}}
$$ bend energy.

$$
E_{\text {bend }}=\frac{k}{2}\left(\kappa^{2}\right) A
$$

