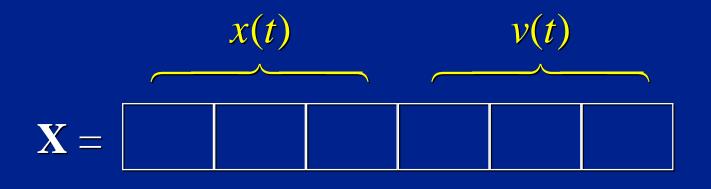
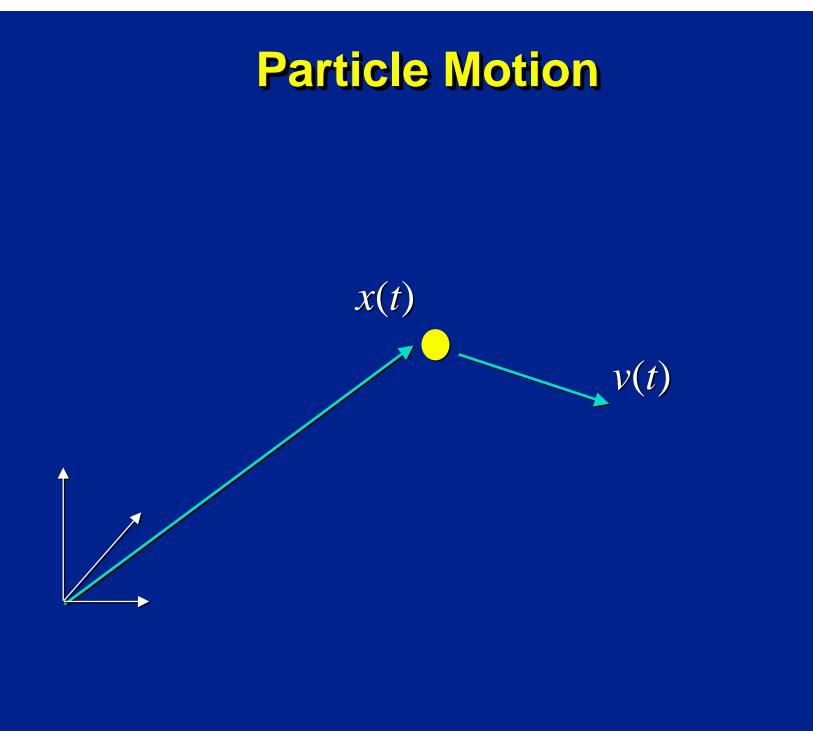
Rigid Body Dynamics

David Baraff

SIGGRAPH 2001 COURSE NOTES

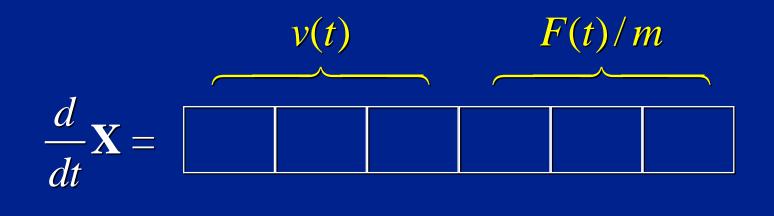
$$\mathbf{X}(t) = \begin{pmatrix} x(t) \\ v(t) \end{pmatrix}$$



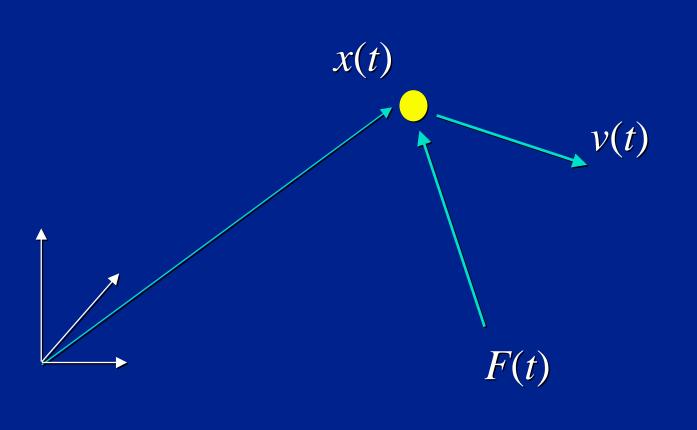


State Derivative

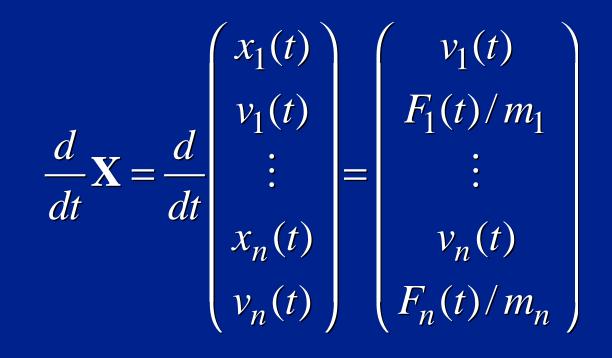
$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ F(t)/m \end{pmatrix}$$



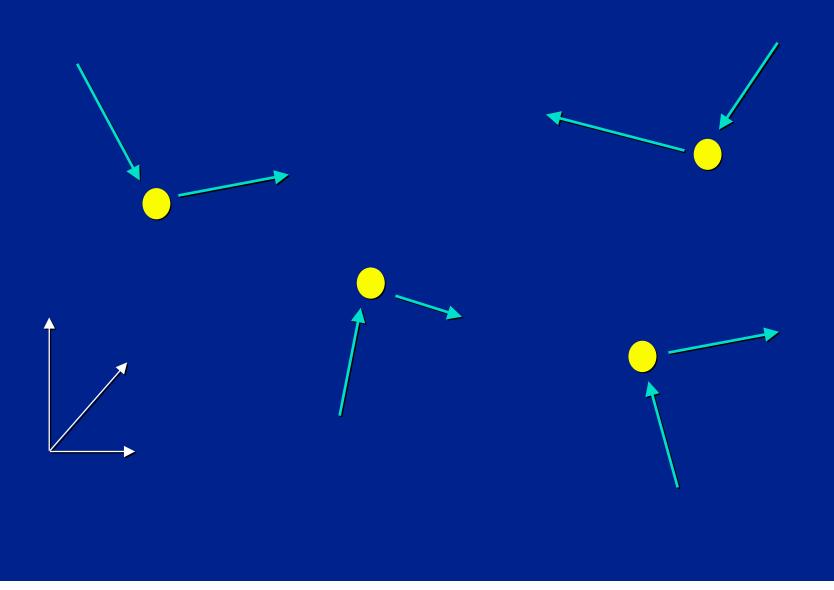
Particle Dynamics

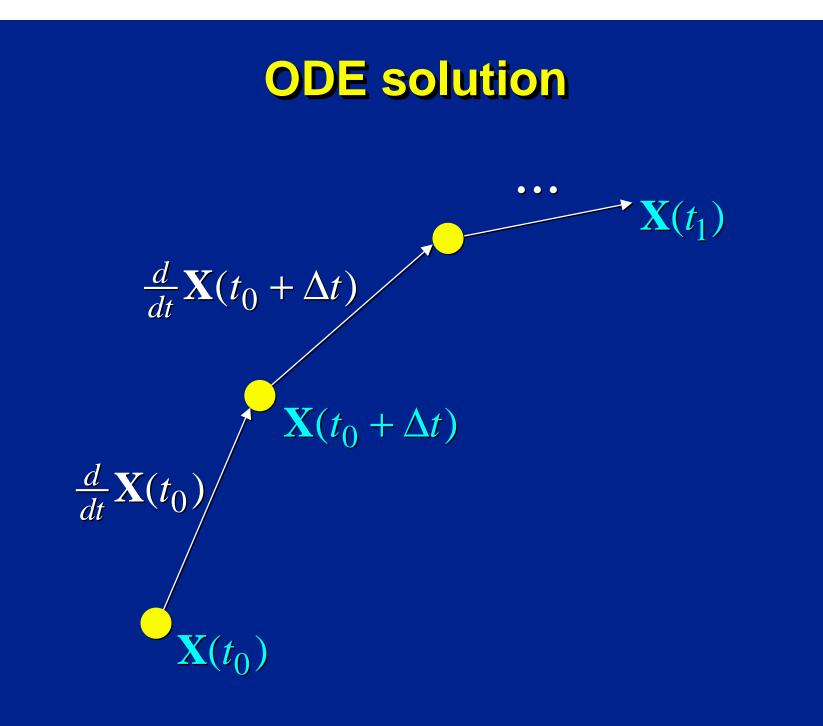


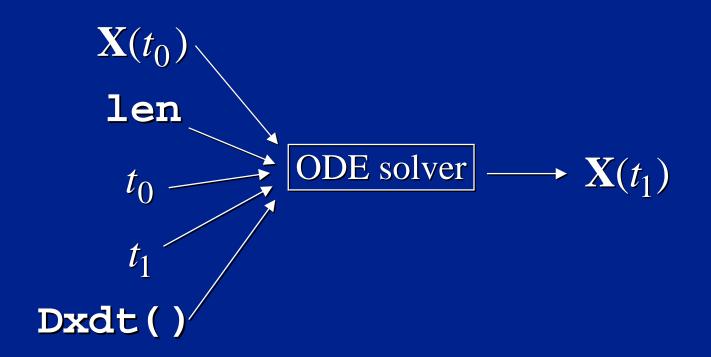
State Derivative

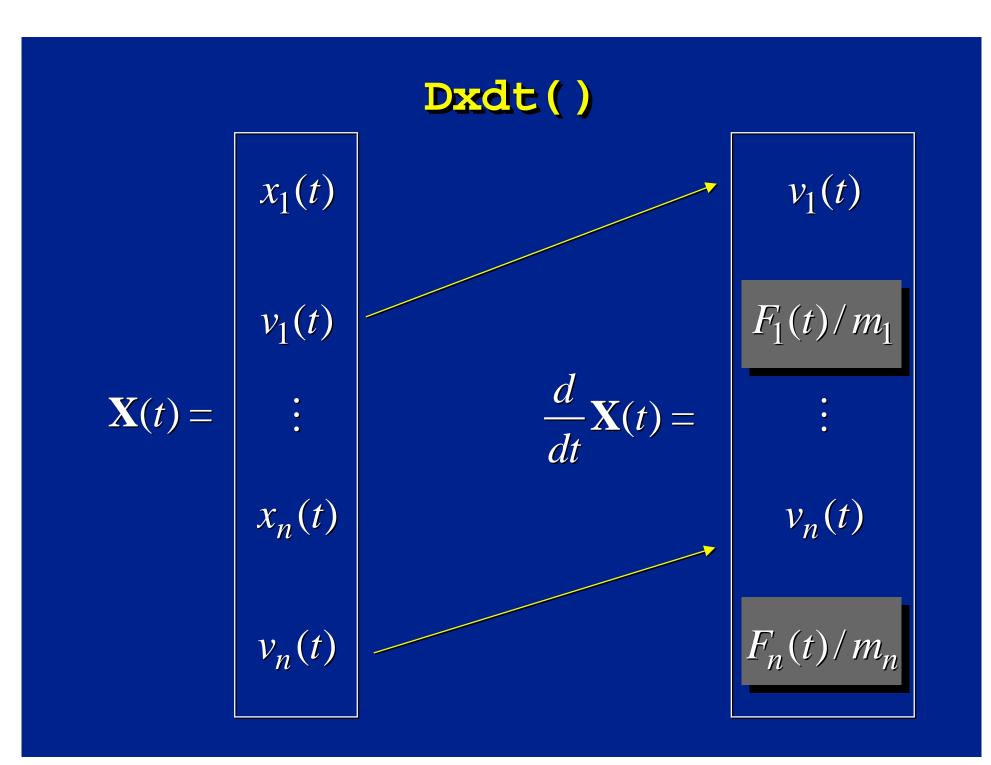


Multiple Particles

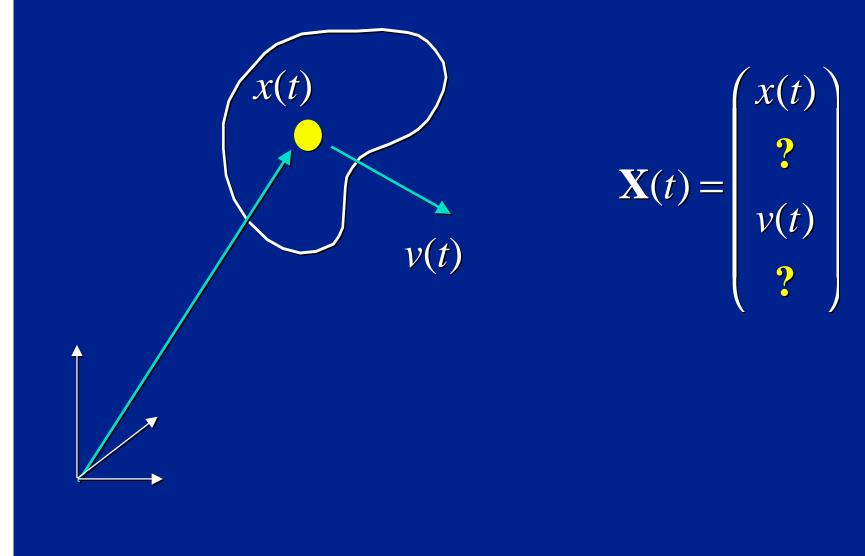






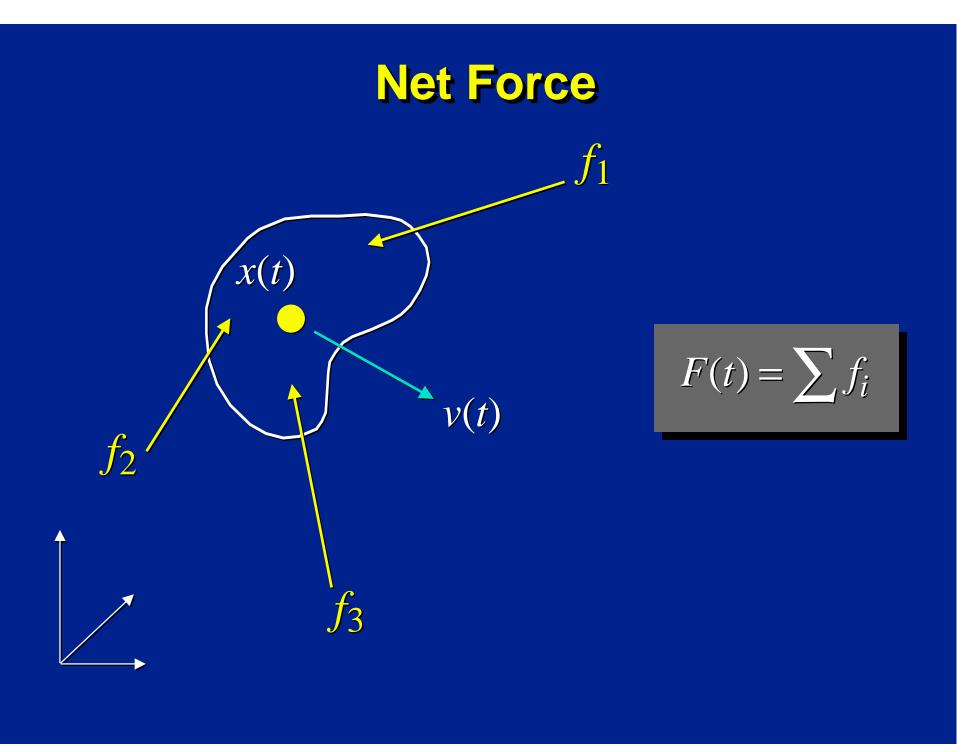


Rigid Body State



Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ ? \\ Mv(t) \\ ? \end{pmatrix} = \begin{pmatrix} v(t) \\ ? \\ F(t) \\ ? \end{pmatrix}$$

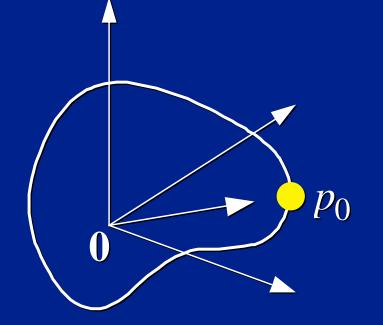


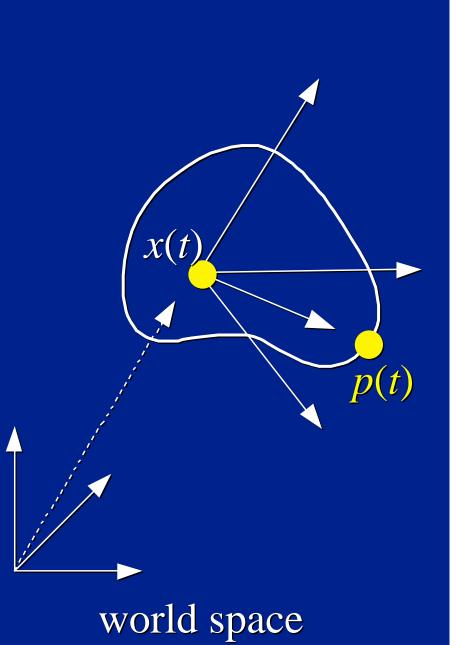
Orientation

We represent orientation as a rotation matrix^{\dagger} **R**(*t*). Points are transformed from body-space to world-space as:

 $p(t) = \mathbf{R}(t)p_0 + x(t)$

[†]He's lying. Actually, we use quaternions.

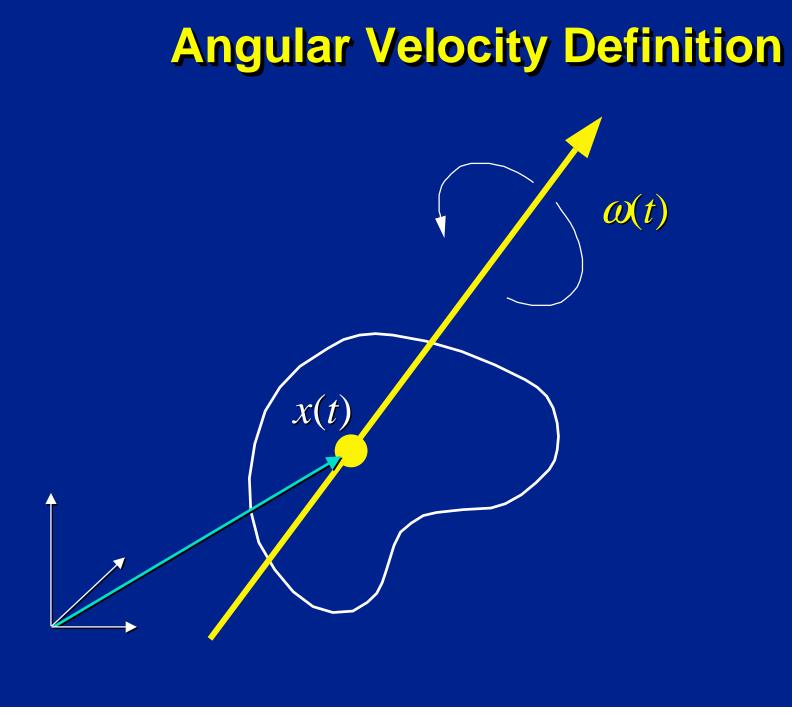




Angular Velocity

We represent angular velocity as a vector $\omega(t)$, which encodes both the axis of the spin and the speed of the spin.

How are $\mathbf{R}(t)$ and $\boldsymbol{\omega}(t)$ related?



Angular Velocity

 $\mathbf{R}(t)$ and $\boldsymbol{\omega}(t)$ are related by:

$$\frac{d}{dt}\mathbf{R}(t) = \begin{pmatrix} 0 & -\omega_z(t) & \omega_y(t) \\ \omega_z(t) & 0 & -\omega_x(t) \\ -\omega_y(t) & \omega_x(t) & 0 \end{pmatrix} \mathbf{R}(t)$$

 $= \omega(t)^* \mathbf{R}(t)$

 \bigcirc

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ \mathbf{R}(t) \\ Mv(t) \\ \langle \boldsymbol{\omega}(t) \rangle \end{pmatrix} = \begin{pmatrix} v(t) \\ \boldsymbol{\omega}(t)^* \mathbf{R}(t) \\ F(t) \\ \mathbf{P}(t) \\ \mathbf{P}(t) \end{pmatrix}$$

Need to relate a(t) and mass distribution to F(t).

Inertia Tensor

$$\mathbf{I}(t) = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$

$$I_{xx} = M \int_{V} (y^2 + z^2) dV$$

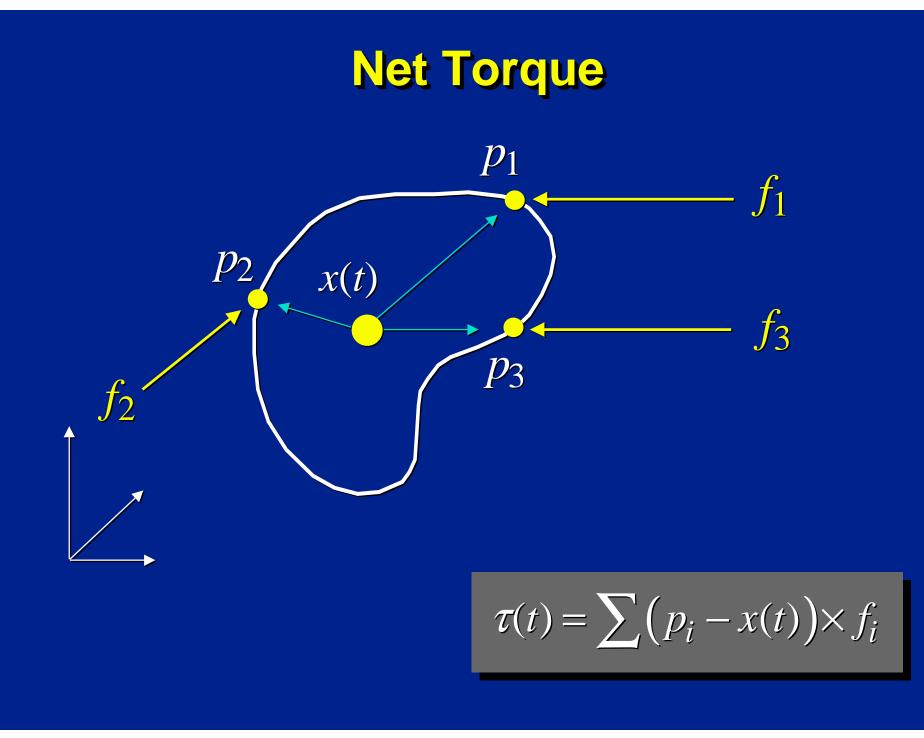
off-diagonal terms

$$I_{xy} = -M \int_{V} xy \, dV$$

Rigid Body Equation of Motion

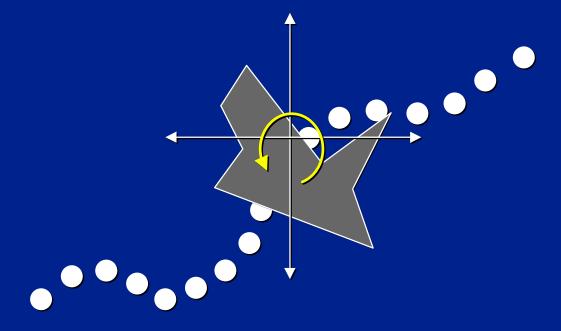
$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ \mathbf{R}(t) \\ \mathbf{M}v(t) \\ \mathbf{I}(t)\boldsymbol{\omega}(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \boldsymbol{\omega}(t)^* \mathbf{R}(t) \\ \boldsymbol{\omega}(t)^* \mathbf{R}(t) \\ F(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

P(t) – linear momentum L(t) – angular momentum



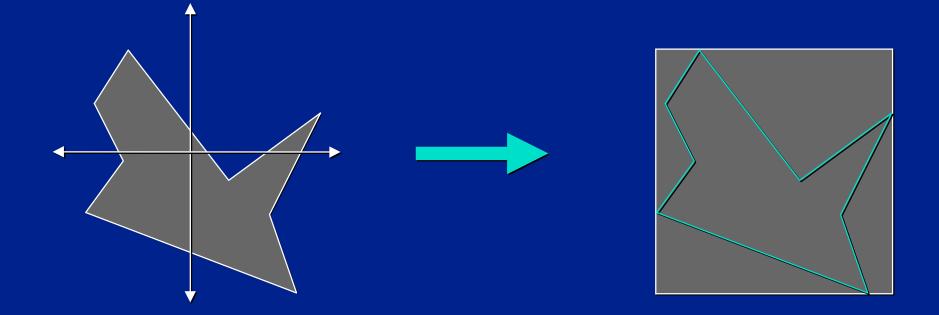
Inertia Tensors Vary in World Space... 09000 $I_{xx} = M \int_{U} (y^2 + z^2) dV \qquad I_{xy} = -M \int_{U} xy dV$

... but are Constant in Body Space



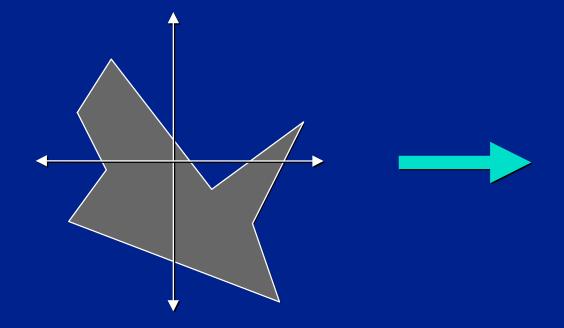
 $\mathbf{I}(t) = \mathbf{R}(t)\mathbf{I}_{\text{body}}\mathbf{R}(t)^{T}$

Approximating I_{body}: Bounding Boxes



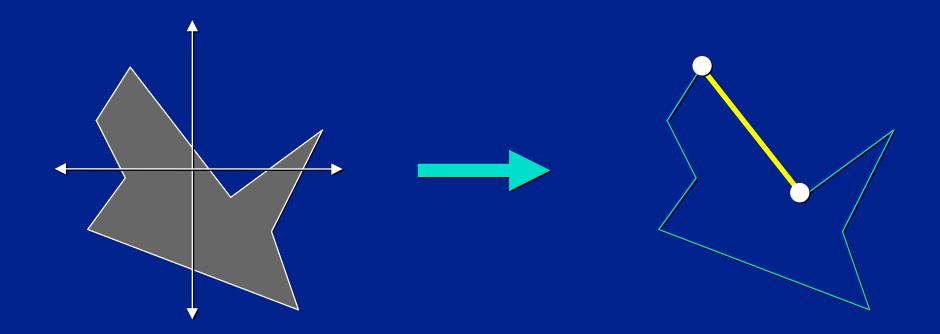
Pros: Simple. Cons: Bounding box may not be a good fit. Inaccurate.

Approximating I_{body}: **Point Samping**



Pros: Simple, fairly accurate, no B-rep needed. Cons: Expensive, requires volume test.

Computing I_{body}: Green's Theorem (2x!)



Pros: Simple, exact, no volumes needed. Cons: Requires boundary representation. Code: http://www.acm.org/jgt/papers/Mirtich96

What's in the Course Notes

1. Implementation of **Dxdt()** for rigid bodies (bookkeeping, data structures, computations) 2. Quaternions—derivations and code 3. Miscellaneous formulas and examples 4. Derivations for force and torque equations, center of mass, inertia tensor, rotation equations, velocity/acceleration of points