next up previous contents index
Next: Rational Spheres ( d3_rat_sphere Up: Basic Data Types for Previous: Rational Segments in 3D-Space   Contents   Index


Rational Planes ( d3_rat_plane )

Definition

An instance P of the data type d3_rat_plane is an oriented rational plane in the three-dimensional space R3. It can be defined by a tripel (a,b,c) of non-collinear rational points or a single rational point a and a normal vector v.

#include < LEDA/d3 _rat _plane.h >

Creation

d3_rat_plane p introduces a variable p of type d3_rat_plane initialized to the trivial plane.

d3_rat_plane p(d3_rat_point a, d3_rat_point b, d3_rat_point c)
    introduces a variable p of type d3_rat_plane initialized to the plane through (a, b, c).
Precondition a, b, and c are not collinear.

d3_rat_plane p(d3_rat_point a, rat_vector v)
    introduces a variable p of type d3_rat_plane initialized to the plane that contains a with normal vector v.
Precondition v.dim() = 3 and v.length() > 0.

d3_rat_plane p(d3_rat_point a, d3_rat_point b)
    introduces a variable p of type d3_rat_plane initialized to the plane that contains a with normal vector b - a.

Operations

d3_rat_point p.point1() returns the first point of p.

d3_rat_point p.point2() returns the second point of p.

d3_rat_point p.point3() returns the third point of p.

rat_vector p.normal() returns a normal vector of p.

d3_plane p.to_float() returns a floating point approximation of p.

rational p.sqr_dist(d3_rat_point q)
    returns the square of the Euclidean distance between p and q.

rat_vector p.normal_project(d3_rat_point q)
    returns the vector pointing from q to its projection on p along the normal direction.

int p.intersection(const d3_rat_point p1, const d3_rat_point p2, d3_rat_point& q)
    if the line l through p1 and p2 intersects p in a single point this point is assigned to q and the result is 1, if l and p do not intersect the result is 0, and if l is contained in p the result is 2.

int p.intersection(d3_rat_plane Q, d3_rat_point& i1, d3_rat_point& i2)
    if p and plane Q intersect in a line L then (i1, i2) are assigned two different points on L and the result is 1, if p and Q do not intersect the result is 0, and if p = Q the result is 2.

d3_rat_plane p.translate(rational dx, rational dy, rational dz)
    returns p translated by vector (dx, dy, dz).

d3_rat_plane p.translate(integer dx, integer dy, integer dz, integer dw)
    returns p translated by vector (dx/dw, dy/dw, dz/dw).

d3_rat_plane p.translate(rat_vector v) returns p+ v, i.e., p translated by vector v.
Precondition v.dim() = 3.

d3_rat_plane p + rat_vector v returns p translated by vector v.

d3_rat_plane p.reflect(d3_rat_plane Q) returns p reflected across plane Q.

d3_rat_plane p.reflect(d3_rat_point q) returns p reflected across point q.

d3_rat_point p.reflect_point(d3_rat_point q)
    returns q reflected across plane p.

int p.side_of(d3_rat_point q) computes the side of p on which q lies.

bool p.contains(d3_rat_point q)
    returns true if point q lies on plane p, i.e., (p.side_of(q) == 0), and false otherwise .

bool p.parallel(d3_rat_plane Q)
    returns true if planes p and Q are parallel, and false otherwise.

ostream& ostream& O << p writes p to output stream O.

istream& istream& I >> d3_rat_plane& p
    reads p from input stream I.

Non-Member Functions

int orientation(d3_rat_plane p, d3_rat_point q)
    computes the orientation of p.sideof(q).


next up previous contents index
Next: Rational Spheres ( d3_rat_sphere Up: Basic Data Types for Previous: Rational Segments in 3D-Space   Contents   Index
LEDA research project
2000-02-09