next up previous contents index
Next: Bounded Node Priority Queues Up: Graphs and Related Data Previous: Node Partitions ( node_partition   Contents   Index


Node Priority Queues ( node_pq )

Definition

An instance Q of the parameterized data type node_pq<P> is a partial function from the nodes of a graph G to a linearly ordered type P of priorities. The priority of a node is sometimes called the information of the node. For every graph G only one node_pq<P> may be used and every node of G may be contained in the queue at most once (cf. section Priority Queues for general priority queues).

#include < LEDA/node _pq.h >

Creation

node_pq<P> Q(graph G) creates an instance Q ot type node_pq<P> for the nodes of graph G with dom(Q) = $ \emptyset$.

Operations

void Q.insert(node v, P x) adds the node v with priority x to Q.
Precondition v $ \notin$dom(Q).

P Q.prio(node v) returns the priority of node v.

bool Q.member(node v) returns true if v in Q, false otherwise.

void Q.decrease_p(node v, P x) makes x the new priority of node v.
Precondition x < = Q.prio(v).

node Q.find_min() returns a node with minimal priority (nil if Q is empty).

void Q.del(node v) removes the node v from Q.

node Q.del_min() removes a node with minimal priority from Q and returns it (nil if Q is empty).

void Q.clear() makes Q the empty node priority queue.

int Q.size() returns | dom(Q)|.

int Q.empty() returns true if Q is the empty node priority queue, false otherwise.

P Q.inf(node v) returns the priority of node v.

Implementation

Node priority queues are implemented by binary heaps and node arrays. Operations insert, del_node, del_min, decrease_p take time O(log m), find_min and empty take time O(1) and clear takes time O(m), where m is the size of Q. The space requirement is O(n), where n is the number of nodes of G.


next up previous contents index
Next: Bounded Node Priority Queues Up: Graphs and Related Data Previous: Node Partitions ( node_partition   Contents   Index
LEDA research project
2000-02-09