

Outline

1. Definition and Examples

2. Applications
3. Basic properties
4. Construction

Definition

Classical example

looking for nearest neighbor

Voronoi
Delaunay
Classical example

Boris N. Delaunay (1890-1980)

Voronoi
Delaunay
Classical example

Boris N. Delaunay (1890-1980)

Voronoi \leftrightarrow geometry

Delaunay \leftrightarrow topology 1

Voronoi

faces of the Voronoi diagram

Voronoi

faces of the Voronoi diagram

Voronoi

faces of the Voronoi diagram

Voronoi

Voronoi is everywhere

THE Delaunay property

Voronoi

Voronoi

Several applications
nearest neighbor graph

nearest neighbor graph

nearest neighbor graph

k nearest neighbors

k nearest neighbors

k nearest neighbors

Largest empty circle

Largest empty circle

MST

MST

Other applications

Reconstruction

Other applications

Reconstruction

Meshing

Other applications

Reconstruction

Meshing / Remeshing

Other applications

Reconstruction

Meshing / Remeshing

Other applications

Reconstruction
Meshing / Remeshing Path planning

Other applications
Reconstruction
Meshing / Remeshing Path planning and others...

Main properties

of Delaunay

point / sphere duality

orientation predicate

in-sphere predicate
point / sphere duality

Euler formula

f : number of facets (except ∞) e : number of edges
v : number of vertices

$$
f-e+v=1
$$

Euler formula

f : number of facets (except ∞) e : number of edges
v : number of vertices

$$
f-e+v=1
$$

$$
1-3+3=1
$$

Euler formula

f : number of facets (except ∞) e : number of edges
v : number of vertices

$$
f-e+v=1
$$

k : size of ∞ facet

number of oriented edges
in a triangulation: $2 e=3 f+k$

Euler formula

$$
f-e+v=1
$$

Triangulation

$$
2 e=3 f+k
$$

$$
\begin{aligned}
& f=2 v-2-k=O(v) \\
& e=3 v-3-k=O(v)
\end{aligned}
$$

Delaunay maximizes the smallest angle

\rightarrow Delaunay maximizes the sequence of angles in lexicographical order

Local optimality vs global optimality

locally Delaunay... but not globally Delaunay

Theorem

Locally Delaunay everywhere

Globally Delaunay

Proof:

Let t_{0} be locally Delaunay, but not globally Delaunay Let $v \in \operatorname{circle}(t)(v \notin t)$

Proof:

Let t_{0} be locally Delaunay, but not globally Delaunay

Proof:

Let t_{0} be locally Delaunay, but not globally Delaunay

Proof:

Let t_{0} be locally Delaunay, but not globally Delaunay

Proof:

Let t_{0} be locally Delaunay, but not globally Delaunay

Proof:

Let t_{0} be locally Delaunay, but not globally Delaunay

Since \exists finitely many triangles, at some point v is a vertex of t_{i}

Local optimality and smallest angle Case of 4 points

Lemma:
For any 4 points in convex position,
Delaunay \Longleftrightarrow smallest angle maximized

Local optimality and smallest angle Case of 4 points

Let δ be the smallest angle

Local optimality and smallest angle
Case of 4 points

Local optimality and smallest angle

Theorem
Delaunay \Longleftrightarrow maximum smallest angle
Proof:

Local optimality and smallest angle

Theorem
Delaunay \Longleftrightarrow maximum smallest angle
Proof:
T triangulation w/ max. smallest angle

Local optimality and smallest angle

Theorem
Delaunay \Longleftrightarrow maximum smallest angle
Proof:
T triangulation w/ max. smallest angle
\Longrightarrow max. in each quadrilateral

Local optimality and smallest angle

Theorem
Delaunay \Longleftrightarrow maximum smallest angle
Proof:
T triangulation w/ max. smallest angle
\Longrightarrow max. in each quadrilateral
\Longrightarrow locally Delaunay

Local optimality and smallest angle

Theorem
Delaunay \Longleftrightarrow maximum smallest angle
Proof:
T triangulation $\mathrm{w} /$ max. smallest angle
\Longrightarrow max. in each quadrilateral
\Longrightarrow locally Delaunay
\Longrightarrow globally Delaunay

Computing Delaunay

Lower bound

Lower bound for Delaunay

Delaunay can be used to sort numbers

Lower bound for Delaunay

Delaunay can be used to sort numbers

Take an instance of sort
Assume one can compute Delaunay in \mathbb{R}^{2}
Use Delaunay to solve this instance of sort

Lower bound for Delaunay

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$, to be sorted

Lower bound for Delaunay

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$, to be sorted
$\left(x_{1}, x_{1}^{2}\right), \ldots,\left(x_{n}, x_{n}^{2}\right) \quad n$ points

$$
\left(x_{i}, x_{i}^{2}\right)
$$

Lower bound for Delaunay

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$, to be sorted
$\left(x_{1}, x_{1}^{2}\right), \ldots,\left(x_{n}, x_{n}^{2}\right) \quad n$ points
Delaunay
\rightarrow order in x

Lower bound for Delaunay

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$, to be sorted
$\left(x_{1}, x^{2}\right),\left(x, x^{2}\right) \quad$ points $\boldsymbol{v}(n)$
$\left(x_{1}, x_{1}^{2}\right), \ldots,\left(x_{n}, x_{n}^{2}\right) \quad n$ points
$\downarrow f(n)$
Delaunay

$$
\downarrow O(n)
$$

\rightarrow order in x
$O(n)+f(n) \in \Omega(n \log n) \quad x_{i}$

Lower bound for Delaunay

$$
\Omega(n \log n)
$$

Computing Delaunay

Incremental algorithm

(SHORT OVERVIEW)

