

1. Definition and Examples

2. Applications

- 3. Basic properties
- 4. Construction

Definition

Voronoi is everywhere

THE Delaunay property

Several applications

nearest neighbor graph

nearest neighbor graph

q nearest neighbor of p $\Rightarrow pq$ Delaunay edge

nearest neighbor graph

Largest empty circle

Reconstruction

Reconstruction

Meshing / Remeshing

Reconstruction

Meshing / Remeshing

Reconstruction

Meshing / Remeshing

Path planning

Other applications

Reconstruction

Meshing / Remeshing

Path planning

and others...

Main properties

of Delaunay

point / sphere duality $p^{\star} = (x_p, y_p, x_p^2 + y_p^2)$ $P: x^2 + y^2 = z$ $p = (x_p, y_p)$

in-sphere predicate

Euler formula

- f: number of facets (except ∞)
- e: number of edges
- v: number of vertices

$$f - e + v = 1$$

Euler formula

- f: number of facets (except ∞)
- e: number of edges
- v: number of vertices

$$f - e + v = 1$$

$$1 - 3 + 3 = 1$$

Euler formula

- f: number of facets (except ∞)
- e: number of edges
- v: number of vertices

Euler formula f - e + v = 1

Triangulation

$$2e = 3f + k$$

$$f = 2v - 2 - k = O(v)$$
$$e = 3v - 3 - k = O(v)$$

Delaunay maximizes the smallest angle

 \rightarrow Delaunay maximizes the sequence of angles in lexicographical order

Local optimality vs global optimality

locally Delaunay... but not globally Delaunay

Locally Delaunay everywhere

Globally Delaunay

Let t_0 be locally Delaunay, but not globally Delaunay

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in circle(t)$ $(v \notin t)$

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in circle(t)$ $(v \notin t)$

 t_1

v

 t_0

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in circle(t)$ $(v \notin t)$

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in \operatorname{circle}(t) \ (v \notin t)$ t_0 t_1 v

Since \exists finitely many triangles, at some point v is a vertex of t_i

Local optimality and smallest angle Case of 4 points

Lemma: For any 4 points in convex position, Delaunay \iff smallest angle maximized Local optimality and smallest angle Case of 4 points

Let δ be the smallest angle

Local optimality and smallest angle Case of 4 points

Theorem Delaunay \iff maximum smallest angle

Proof:

Theorem Delaunay \iff maximum smallest angle

Proof:

T triangulation w/ max. smallest angle

Theorem Delaunay \iff maximum smallest angle

Proof:

T triangulation w/ max. smallest angle \implies max. in each quadrilateral

Theorem Delaunay \iff maximum smallest angle Proof: T triangulation w/ max. smallest angle

 \implies max. in each quadrilateral

 \implies locally Delaunay

Local optimality and smallest angle

Theorem Delaunay \iff maximum smallest angle Proof. T triangulation w/ max. smallest angle \implies max. in each quadrilateral \implies locally Delaunay

 \implies globally Delaunay

Computing Delaunay

Lower bound

Delaunay can be used to sort numbers

Delaunay can be used to sort numbers

Take an instance of sort Assume one can compute Delaunay in \mathbb{R}^2 Use Delaunay to solve this instance of sort

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$, to be sorted

$\Omega(n\log n)$

Computing Delaunay

Incremental algorithm

(SHORT OVERVIEW)

