Geographic Routing

GPSR & GEAR

Sergei Vassilvitskii

Papers

- GPSR: Greedy Perimeter Stateless Routing for Wireless Networks
 - Brad Karp, H.T. Kung
- Geographical and Energy Aware Routing: a recursive data dissemination protocol for wireless sensor networks
 - Yan Yu, Ramesh Govindan, Deborah Estrin

GPSR: Motivation

- Ad-hoc routing algorithms (DSR, AODV)
 - Suffer from out of date state (DV)
 - Torrents of link status messages (LS)

- Can use geographic information for routing
 - Assume every node knows position (x,y)
 - Keep a lot less state in the network
 - Require fewer update messages

GPSR: Algorithm

- Whenever possible, use Greedy forwarding.
 - Look at all neighbors, select closest to destination
- When all neighbors are further away
 - Use the right hand rule and walk around the obstacle
 - Resume greedy forwarding as soon as possible to deliver message to destination
- Note: no attempt is made to conserve energy

GPSR: Details

- How to route around an obstacle?
 - Locally discover a connected planar graph as subset of network graph.

- Edge (u,v) can be safely removed.

GPSR: Details (2)

 When stuck, use right hand rule to go around obstacles.

 Always go along the face that is crossed by xD

GPSR: Results

- GPSR delivered > 98% of packets successfully, similar to DSR
- Protocol overhead was 50% less: 15,000 vs.
 30,000 packets
- GPSR used shorter paths.
- Heuristic results, no theoretical guarantees.

Papers

- GPSR: Greedy Perimeter Stateless Routing for Wireless Networks
 - Brad Karp, H.T. Kung
- Geographical and Energy Aware Routing: a recursive data dissemination protocol for wireless sensor networks
 - Yan Yu, Ramesh Govindan, Deborah Estrin

GEAR: Motivation

Automatic Load Balancing in Routing

Original Network

GEAR: Motivation (2)

Automatic Load Balancing in Routing

Not Balanced Network

GEAR: Motivation (3)

Automatic Load Balancing in Routing

Load Balanced Network

GEAR: Algorithm (1)

Assumptions

- Nodes know location, energy level of themselves and neighbors
- Bidirectional links
- Routing to a region R

Trick

 Maintain and update, a cost h(N_i, R) for each neighbor & destination region.

GEAR: Algorithm (2)

Routing:

- Look at all neighbors closer to the destination, pick one with lowest learned cost.
- If all neighbors are further away, pick the neighbor with the lowest learned cost, update the cost.
- Initial Cost
 - $H(N,R) = \alpha \operatorname{dist}(N,R) + (1-\alpha) \operatorname{Energy}(N)$
- Cost Update Rule
 - $H(N, R) = h(N_{min}, R) + C(N, N_{min})$

GEAR: Example

• H(B,T) = 2, $H(C,T) = \sqrt{5}$

- Update H(B,T)=2 + C(C,B).
- Next Round: S→B

GEAR: Analysis

- Delivery Guarantee
- ✓ Load Balancing
- Routing around Holes
- But
 - Can get stuck in local minima while routing
 - Basically implements Q-Learning (AI)
 - $-\Omega$ (n²) Convergence time in worst case.

GEAR: Bad Case

GEAR: Results

- 50 to 100% increase over GPSR in number of packets transmitted before network partition.
- 50% increase over GPSR in number connected pairs after network partition.
- 25 to 45% increase in the average path length taken by a packet.

Conclusion

- Both rely on geographic information to speed up routing.
- Use different techniques to route around holes.
- GEAR tries to automatically load balance the network traffic when routing around holes.

Any questions?