
Information Management I:
Sensor Database, Querying, Publish &
Subscribe, Information Summarization +
SIGMOD 2003 paper

CS428: Information Processing for Sensor Networks,
and STREAM meeting

Presented by Itaru Nishizawa (Hitachi, Ltd.)
nishizawa@home.email.ne.jp

May 16, 2003

May 16, 2003 STREAM meeting 2

Papers
1. [madden02b]:

S. Madden, M. Franklin, J. Hellerstein, and W. Hong: “TAG: A
Tiny AGgregation Service for Ad-Hoc Sensor Networks”, In Proc.
of the 5th Annual Symposium on Operating Systems Design and
Implementation (OSDI 2002).

2. [hellerstein03]:
J. Hellerstein, W. Hong, S. Madden, and K Stanek: “Beyond
Average: Towards Sophisticated Sensing with Queries”, In Proc.
of the 2nd Int. Workshop on Information Processing in Sensor
Networks (IPSN 03).

3. [madden03a]:
S. Madden, M. Franklin, J. Hellerstein, and W. Hong: “The Design
fo and Acquisitional Query Processor For Sensor Networks”, In
Proc. of the 22nd ACM International Conference on Management
of Data (SIGMOD 2003).

* All papers are from Berkeley & Intel Research.

http://graphics.stanford.edu/courses/cs428-03-spring/Papers/readings/DataBases/madden_tag.pdf
http://graphics.stanford.edu/courses/cs428-03-spring/Papers/readings/DataBases/madden_beyond_average_ipsn.pdf
http://graphics.stanford.edu/courses/cs428-03-spring/Papers/readings/DataBases/madden_beyond_average_ipsn.pdf
http://graphics.stanford.edu/courses/cs428-03-spring/Papers/readings/DataBases/madden_beyond_average_ipsn.pdf
http://graphics.stanford.edu/courses/cs428-03-spring/Papers/readings/DataBases/madden_tag.pdf
http://graphics.stanford.edu/courses/cs428-03-spring/Papers/readings/DataBases/madden_tag.pdf
http://graphics.stanford.edu/courses/cs428-03-spring/Papers/readings/DataBases/madden_tag.pdf

May 16, 2003 STREAM meeting 3

Paper 1: Background

Berkeley motes
2cmx4cmx1cm in size
Radio, processor,
memory, battery pack,
and sensors

TinyOS
Ad-hoc networks
Device detection
Dynamic routing

Next Generation’s single chip mote:
2mmx2.5mm,
http://www.cs.berkeley.edu/~jhill/spec/index.htm

May 16, 2003 STREAM meeting 4

Application and Motivation

Applications
Civil engineers: Building integrity monitoring
Biologists: Habitat monitoring
Comp. Admins: Data Center monitoring

Motivation
Needs summary rather than raw data
Aggregation has to be provided as a core
service by the system software

May 16, 2003 STREAM meeting 5

TAG approach

A simple, declarative query model
Like SQL without joins

Process aggregates in the network
To reduce the data flow in the network

Query processing operations:
Users pose queries to a powered basestation
Queries are distributed into the network
Sensors route data back through a routing
tree rooted at the basestation

May 16, 2003 STREAM meeting 6

Ad-Hoc Routing

Tree-based routing scheme

011
014

“Be the root”

012

015 016

{1}

{2}

{2}

{3}

The root broadcasts a message to
organize a routing tree
The message contains id and level
Any node without assigned the level
set its level and parent if they hear
the message

010 {0}

{2} {1}

013

{level}A sensor node id

Routing messages are periodically
broadcast from the root

May 16, 2003 STREAM meeting 7

Query Model and Environment

Query:
SQL-style syntax
Query refers single table “sensors”
(i.e. Query doesn’t contain join)

Table and Attributes:
sensors table is append only
Attributes are sensor inputs (e.g. temperature, light)
Each mote stores a small catalog of attributes
Central query processor stores all attributes

May 16, 2003 STREAM meeting 8

Query Example

Query in TAG:
SELECT AVG(volume), room
FROM sensors
WHERE floor = 6
GROUP BY room
HAVING AVG(volume) > threshold
EPOCH DURATION 30s

Query in English:
Reports all rooms on the 6th floor where the
average volume is over a specific threshold.
Updates are delivered every 30 seconds.

May 16, 2003 STREAM meeting 9

TAG Query Semantics

Same as SQL except for,
1. EPOCH DURATION clause
2. Output is stream of values

<group id, aggregate value>
Each group is time-stamped

3. More aggregate functions
SQL: COUNT, MIN, MAX, SUM, and AVERAGE
TAG: COUNT, MAX, MIN, SUM, AVERAGE, MEDIAN,

and HISTGRAM

May 16, 2003 STREAM meeting 10

Aggregates Taxonomy

CUHADDPartial State4

NoYesNoNoYesYesMonotonic3

SSESSEExemplary (E), or
Summary (S)2

YesNoYesYesYesNoDuplicate
Sensitive1

HISTOGRAMCOUNT
DISTINCTMEDIANAVERAGECOUNT,

SUM
MAX,
MIN

1 This property is used in some optimization such as redundant reporting
2 Exemplary aggregates behave unpredictably in the data loss
3 s’ is combined partial state record of s1 and s2, then ∀s1, s2, e(s’) ≧ MAX(e(s1),
e(s2)) or ∀s1, s2, e(s’) ≦ MIN(e(s1), e(s2)).
4 “Partial State” relates to the amount of state required for each partial state record.
D: Distributive (partial state record size = final aggregate record size), A: Algebraic
(partial state size = constant), H: Holistic (partial state record size = proportional
in size to the set of data), U: Unique (similar to Holistic), C: Content-Sensitive
(proportional to some property of the data values)

May 16, 2003 STREAM meeting 11

Network Aggregation - Naïve

Naïve implementation
(centralized, server-based approach)

Base station

(1)

(2)(1) Sensors send all the readings
to the base station

(2) Base station calculates
aggregate values

Sensors

May 16, 2003 STREAM meeting 12

Network Aggregation - TAG I

Distribution phase
Requests are pushed down into the network

Base station
Sensors

Tree Shape

Request r :=
query + interval when

the sender is expecting to hear
the partial state

r
Enables scheduling of listening

May 16, 2003 STREAM meeting 13

Network Aggregation - TAG II

Collection phase
Aggregate values are continually routed up

May 16, 2003 STREAM meeting 14

Performance Comparison

2500 nodes (d=5)

Benefit of TAG depends
on network topology
Ex. TAG = Centralized
in single-hop env.

May 16, 2003 STREAM meeting 15

Optimizations - Methods

Snooping: Allow nodes to examine messages not
directly addressed to them

Nodes can initiate aggregation even after missing
the start request
Enables to reduce the number of messages
(Ex. If a node hears a peer reporting a maximum value greater
than its local value, the node doesn’t send it)

Hypothesis Testing: Compute an exemplary local value
and issue a new request using the value
(Ex. MIN: compute the minimum sensor value m over the highest

levels of the subtree, and issue a new request asking for
values less than m over the whole tree.)

May 16, 2003 STREAM meeting 16

Optimizations - Results

Sensor values are
uniformly distributed
over the range
[0..100]
Hypothesis is made
at the root

May 16, 2003 STREAM meeting 17

Tolerance to Loss

Communication loss is essential in sensor domain

Networking Faults monitoring and adaptation:
Maintain neighbors list and monitors the quality of
the link

For tolerance loss
Child cache: parents remember the partial state
records reported by their children
Redundant reporting: report to 2 parents

May 16, 2003 STREAM meeting 18

Prototype and Experiments

16 motes arranged in
a depth 4 tree
TAG is better due to
reduced radio
contention. (Cent.
Approach requires
4685mes., TAG: 2330
mes. i.e. 50%
reduction)

May 16, 2003 STREAM meeting 19

Paper2: Overview

Status report
Extend TAG framework

Model and Language

Apply TinyDB to three sensing
applications

Topographic Mapping
Wavelet-based compression
Vehicle Tracking

May 16, 2003 STREAM meeting 20

Extending TAG framework

SELECT expr1, expr2, …
FROM sensors
WHERE pred1 [AND | OR] pred2 …
GROUP BY groupExpr1, groupExpr2, …
HAVING havingPred1 [AND | OR] havingPred2 …
SAMPLE PERIOD t

temporal aggregates: support inter-epoch aggregation
using window size and sliding distance

e.g. winavg(window_size, sliding_dist, arg)
winave(10, 1, light): computes the 10-sample
running average of light sensor readings

“EPOCH DURATION” in Paper1

May 16, 2003 STREAM meeting 21

New Language Features

Events: Initiate automatic response
ON EVENT bird-detect(loc):
SELECT AVG(light), AVG(temp)
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30s

Storage Points: Store information locally
CREATE
STORAGE POINT recentLight SIZE 5s
AS (SELECT nodeid, light

FROM sensors
SAMPLE INTERVAL 1s)

Query can refer the storage points
SELECT MAX(lignt) FROM recentLight

May 16, 2003 STREAM meeting 22

Vehicle Tracking

Simple tracking problem
Single target
Target is detected when the running average
is beyond a pre-defined threshold
Target location is reported as the node
location with the largest running average of
the sensor
The application expects to receives a time
series of data from the sensor network once
a target is detected

May 16, 2003 STREAM meeting 23

Advantages of TinyDB-based Impl.

Applications can mix and match existing aggregates
and filters of TinyDB’s generic query language
Applications can run multiple queries at the same time
TinyDB takes care of a lot of system programming
issues
User-defined aggregates are reusable in a natural way
TinyDB’s query optimization techniques can benefit
tracking queries

May 16, 2003 STREAM meeting 24

Implementation

Attributes in TinyDB SQL
mag: magnetometer reading
time: current timestamp
nodeid: unique identifier of each node
(The basestation can map nodeid to some spatial
coordinate)
winavg(10, 1, mag): 10-sample running
average for the magnetometer readings
max2(agvmsg, nodeid): nodeid with the
largest average magnetometer reading

May 16, 2003 STREAM meeting 25

Naïve Implementation

// Create storage point holding 1 second worth of running average of
// magnetometer readings with a sample period of 100 milliseconds and
// filter the running average with the target detection threshold.
CREATE STORAGE POINT running_avg_sp SIZE 1s AS
(SELECT time, nodeid, winavg(10, 1, mag) AS avgmag
FROM sensors
GROUP BY nodeid
HAVING avgmag > threshold
SAMPLE PERIOD 100ms);

// Query the storage point every second to compute target location
// for each timestamp.
SELECT time, max2(avgmax, nodeid)
FROM running_avg_sp
GROUP BY time/10 // <- to accommodate minor time

// variations between nodes
SAMPLE PERIOD 1s;

May 16, 2003 STREAM meeting 26

Naïve Implementation Problem

All sensor nodes must continuously sample
magnetometer every 100ms
Sampling the magnetometer of a large
percentage of nodes is useless
(The magnetometer consumes 15mW per
sample)

Query-Handoff Implementation:
Start sampling when the target is near and
stop the query when the target moves away

May 16, 2003 STREAM meeting 27

Query-Handoff Implementation 1

// Create an empty storage point.
CREATE STORAGE POINT running_avg_sp
SIZE 1s (time, nodeid, avgmag)

// When the target is detected, run query to compute running average.
ON EVENT target_detected DO
SELECT time, nodeid, winavg(10, 1, mag) AS avgmag
INTO running_avg_sp // <- created above
FROM sensors
GROUP BY nodeid
HAVING avgmag > threshold
SAMPLE PERIOD 100ms
UNTIL avgmag <= threshold;

May 16, 2003 STREAM meeting 28

Query-Handoff Implementation 2

// Query the storage point every sec. to compute target location;
// send result to base and signal target_approaching to the possible
// places the target may move next.
SELECT time, max2(avgmag, nodeid)
FROM running_avg_sp
GROUP BY time/10
SAMPLE PERIOD 1s
OUTPUT ACTION
SIGNAL EVENT target_approaching
WHERE location IN
(SELECT next_location(time, nodeid, avgmag)
FROM running_avg_sp ONCE);

May 16, 2003 STREAM meeting 29

Query-Handoff Implementation 3

// When target_approaching event is signaled, start sampling and
// inserting results into the storage point.
ON EVENT target_approaching DO
SELECT time, nodeid, winavg(8, 1, mag) AS agvmag
INTO running_avg_sp
FROM sensors
GROUP BY nodeid
HAVING avgmag > threshold
SAMPLE PERIOD > 100ms
UNTIL avgmag <= threshold;

May 16, 2003 STREAM meeting 30

Paper3: Overview

Present “Acquisitional Query Processing
(ACQP)” for sensor networks
Acquisitional issues:

Where, when, and how often data is physically
acquired (sampled) and delivered to query
processing operators

Focus on the locations and costs of acquiring
data

Power based query optimization
Semantic Routing Trees

May 16, 2003 STREAM meeting 31

Basic Query Processing Architecture

Queries are
submitted, parsed
and optimized at the
base station
They are sent into
the sensor network,
disseminated and
processed
Results are flowed
up the routing tree

May 16, 2003 STREAM meeting 32

Power Consumption in Sensors

May 16, 2003 STREAM meeting 33

Acquisitional Query Language 1

SELECT-FROM-WHERE Queries:
Support selection, projection, aggregation, and join
(different from TAG paper)
Explicit support for sampling, windowing, and
subqueries
Windows in TinyDB are defined as fixed-size
materialization points over the streams
ex.
CREATE STORAGE POINT recentlight SIZE 8

AS (SELECT nodeid, light FROM sensors
SAMPLE INTERVAL 10s)

May 16, 2003 STREAM meeting 34

Acquisitional Query Language 2

Event-Based Queries:
Starting on events:
ON EVENT bird-detect(log):
SELECT AVG(lignt), AVG(temp),
event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30s

Stopping on events:
STOP ON EVENT(param) WHERE cond(param)

May 16, 2003 STREAM meeting 35

Acquisitional Query Language 3

Lifetime-Based Queries:
SELECT nodeid, accel
FROM sensors
LIFETIME 30 days
Query semantics: The network should run for at
least 30 days, sampling light and acceleration
sensors at a rate that is as quick as possible and still
satisfies this goal.
TinyDB performs lifetime estimation to satisfy a
lifetime clause
Sample rate is calculated by TinyDB

May 16, 2003 STREAM meeting 36

Power-Based Query Optimization 1

Base station performs a simple cost-based query
optimization to minimize overall power consumption
Ordering of sampling and predicates:
SELECT accel, mag
FROM sensors
WHERE accel > c1
AND mag > c2
SAMPLE INTERVAL 1s
Possible query plans:

1.Sample the magnetometer and the accelerometer before
applying selections

2.Sample the magnetometer and apply selection over its
reading before the accelerometer is sampled and filtered

3.Opposite to 2.
Calculate each plan’s cost and choose minimum one

May 16, 2003 STREAM meeting 37

Power-Based Query Optimization 2

Event Query Batching:
ON EVENT e(nodeid)
SELECT a1
FROM sensors AS s
WHERE s.nodeid = e.nodeid
SAMPLE INTERVAL d FOR k
It is possible for multiple instance of the internal
query to be running at the same time
Multi-query optimization

May 16, 2003 STREAM meeting 38

Power-Based Query Optimization 3

Query Rewriting:
ON EVENT e(nodeid)
SELECT a1
FROM sensors AS s
WHERE s.nodeid = e.nodeid
SAMPLE INTERVAL d FOR k

SELECT s.a1
FROM sensors AS s, events AS e
WHERE s.nodeid = e.nodeid
AND e.type = e
AND s.time - e.time <= k AND s.time > e.time
SAMPLE INTERVAL d

May 16, 2003 STREAM meeting 39

Power Sensitive Dissemination & Routing

Semantic Routing Tree (SRT)
Objective: To determine if any of the nodes
below it will need to participate in a given
query
Conceptually: An index over some attributes
A that can be used to locates nodes that
have data relevant to the query

May 16, 2003 STREAM meeting 40

SRT Example

May 16, 2003 STREAM meeting 41

Query Processing

Prioritizing Data Delivery:
Results at a node are enqueued onto a radio queue
Send a tuple that will most improve the “quality” of the answer
Prioritization schemes

naive: no tuple is considered more valuable -> FIFO
winavg: create average of two tuple values and drop one
delta: calculate tuple scores by the difference from the most
recent (in time) value successfully transmitted, and drop the
lowest one

Adapting Rates and Power Consumption:
Compute predicted battery voltage for a time t
Compare its current voltage to the predicted battery voltage
and re-run lifetime calculation if necessary

May 16, 2003 STREAM meeting 42

Signal Approximations

May 16, 2003 STREAM meeting 43

Summary

1. Paper 1: [madden02b]
Present the Tiny AGgregation (TAG) service
Declarative query, single table
Ad-hoc routing, Network aggregation
Performance: TAG > Centralized approach

2. Paper 2: [hellerstein03]
Status report of TinyDB
New language features: Events, Storage points
TinyDB Applications: Topographic mapping, wavelet-based
compression, vehicle tracking

3. Paper 3: [madden03a]
Present an Acquisitional query processing framework
Discuss techniques such as “Power-based query optimization”,
“Semantic Routing Trees” to reduce power consumption of
sensor devices

	Information Management I: Sensor Database, Querying, Publish & Subscribe, Information Summarization + SIGMOD 2003 paper
	Papers
	Paper 1: Background
	Application and Motivation
	TAG approach
	Ad-Hoc Routing
	Query Model and Environment
	Query Example
	TAG Query Semantics
	Aggregates Taxonomy
	Network Aggregation - Naïve
	Network Aggregation - TAG I
	Network Aggregation - TAG II
	Performance Comparison
	Optimizations - Methods
	Optimizations - Results
	Tolerance to Loss
	Prototype and Experiments
	Paper2: Overview
	Extending TAG framework
	New Language Features
	Vehicle Tracking
	Advantages of TinyDB-based Impl.
	Implementation
	Naïve Implementation
	Naïve Implementation Problem
	Query-Handoff Implementation 1
	Query-Handoff Implementation 2
	Query-Handoff Implementation 3
	Paper3: Overview
	Basic Query Processing Architecture
	Power Consumption in Sensors
	Acquisitional Query Language 1
	Acquisitional Query Language 2
	Acquisitional Query Language 3
	Power-Based Query Optimization 1
	Power-Based Query Optimization 2
	Power-Based Query Optimization 3
	Power Sensitive Dissemination & Routing
	SRT Example
	Query Processing
	Signal Approximations
	Summary

