
Geometric Range Searching
Kinetic Data Structures
Clustering Mobile Nodes

Leonidas J. Guibas
Stanford University



Geometric Range Searching

Database

Database Record

1. Suppose we want to know all employees with Salary 
∈ [40K, 50K]

Scan records & pick out those in range   *slow*

• age
• salary
• start date
• city address

employee

Adapted from N. Amato



Motivation

Database

Database Record

2. Suppose we want to know all employees with Salary 
∈ [40K, 50K] AND Age ∈ [25, 40]

Scan records & check each one  *slow*

• age
• salary
• start date
• city address

employee



Motivation, Cnt’d.

Alternative : View each employee is a point in space
age range [15, 75]
salary range [0K, 500K]
start date [1/1/1900, today]
city/address [College Station, Bryan, Austin, …]

4D



Motivation, Cnt’d.

Query #2 (age 25-40, salary 40K-50K)…
age

45

35

25

15

…0 50K 100K150K 200K salary

Orthogonal Range Query (Rectangular)
Want all points in the orthogonal range
Faster than linear scan, if good data structures are used.
Query time O( f(n)+k ) ; where k= # of points reported



Range searching desiderata

Because may queries will be made, it pays to
preprocess the data and build an index. We desire:

Low index storage cost
Fast index construction
Low query overhead [f(n)]

Reasonably efficient dynamic DB modifications 
(insertions/deletions)



1-D Range Searching

Data:Points P={p1, p2, … pn} in 1-D space (set of real numbers)

Query: Which points are in 1-D query rectangle (in interval [x, x’])

Data structure 1: Sorted Array

A=

Query: Search for x & x’ in A by binary searchO(logn)

Output all points between them. O(k)

Total O(logn+k)

Update: Hard to insert points. Add point p’, locate it n A by binary search. 
Shift elements in A to make room. O(n) on average

Storage Cost: O(n)

Construction Cost: O(nlogn)

3 9 27 28 29 98 141 187 200 201 202 999



1-D Range Searching Ctnd.

Data structure 2: Balanced Binary Search Tree
Leaves store points in P (in left to right order)
Internal nodes are splitting values. xV used to guide search.

Left sub tree of V contains all values ≤ xV

Right  sub tree of V contains all values > xV

Query: [x, x’]
Locate x & x’ in T (search ends at leaves u & u’)
Points we want are located in leaves

In between u & u’
Possibly in u (if x=uV)
Possibly in u’ (if x=u’V)

Leaves of sub trees rooted at nodes V s.t. 
parent (v) is on search path root to u (or 
root to u’)



1-D Range Searching Ctnd.
Look for node Vsplit where search paths for x & x’ split

Report all values in right sub tree on search path for x’
Report all values in left sub tree on search path for x

Query: [18:77]

49

893710

8023
62

3 19 30 7059 100

3 10 592319 30 37 62 70 80 100 105

49 89



1-D Range Searching Ctnd.
Look for node Vsplit where search paths for x & x’ split

Report all values in right sub tree on search path for x’
Report all values in left sub tree on search path for x

Query: [18:77]

49

893710

8023
62

3 19 30 7059 100

3 10 592319 30 37 62 70 80 100 105

49 89

Search path

u



1-D Range Searching Ctnd.
Look for node Vsplit where search paths for x & x’ split

Report all values in right sub tree on search path for x’
Report all values in left sub tree on search path for x

Query: [18:77]

49

893710

8023
62

3 19 30 7059 100

3 10 592319 30 37 62 70 80 100 105

49 89

Search path

u u’



1-D Range Searching Ctnd.
Look for node Vsplit where search paths for x & x’ split

Report all values in right sub tree on search path for x’
Report all values in left sub tree on search path for x

Query: [18:77]

49

893710

8023
62

3 19 30 7059 100

3 10 592319 30 37 62 70 80 100 105

49 89

Search path

u u’



1-D Range Searching Ctnd.

Update Cost O(logn) Query Overhead O(logn)
Storage Cost O(n)
Construction Cost O(nlogn)

49

893710

8023
62

3 19 30 7059 100

3 10 592319 30 37 62 70 80 100 105

49 89

Search path

u u’

1-D Range Tree



Key ideas

Pre-store the answer to certain queries, in a 
hierarchical fashion

the binary tree defines canonical intervals

Assemble the answer to the an actual query by 
combining answers to pre-stored queries

any other interval is the disjoint union of canonical intervals

How many answers to canonical sub-problems do we 
pre-store? Storage vs. query-time trade-off.

Canonical
subsets



KD-Trees 
(Higher dimensional generalization of 1D-Range Tree.)

e.g. for 2-dimensions

idea:first split on x-coord (even levels)
next split on y-coord (odd levels)
repeat

levels : store pts

internal nodes : spilitting lines (as opposed to values)



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P

1l
1l



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

1l
1l

2l



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

3l

1l

1l

2l 3l



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

3l

1l

4l

1l

2l 3l

4l
P3



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

3l

1l

4l

5l

1l

2l 3l

4l
P3

5l
P5P4



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

3l

1l

4l

5l

6l

1l

2l 3l

4l
P3

5l
P5P4

6l
p8



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

3l

1l

4l

5l

6l

7l

1l

2l 3l

4l
P3

5l
P5P4

6l
p8

7l
p10p9



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

3l

1l

4l

5l

6l

7l

8l

1l

2l 3l

4l
P3

5l
P5P4

6l
p8

7l
p10p9

8l

P1 P2



Build KD-Tree

1P

2P

3P

4P

5P

6P

7P

8P

9P

10P2l

3l

1l

4l

5l

6l

7l

8l

9l

1l

2l 3l

4l
P3

5l
P5P4

6l
p8

7l
p10p9

8l

P1 P2

9l

P6 P7



Complexity

Construction time
Expensive operation: determining splitting line (median finding)

- Can use linear time median finding algorithm O(n log n) time.

- but can obtain this time without fancy median finding 
Presort points by x-coord and by y-coord (O(nlogn))

Each time find median in O(1) and partition lists and update x and y 
ordering by scan in O(n) time

)nlogn(O)
2
n(T2)n(O)n(T =+=

)nlogn(O)
2
n(T2)n(O)n(T =+=



Complexity

Storage
Number of leaves = n (one per point)
Still binary tree O(n) storage total

Queries
- each node corresponds to a region in plane
- Need only search nodes whose region intersects query region
- Report all points in subtrees whose regions contained in query 

range
- When reach leaf, check if point in query region



Algorithm: Search KD-Tree (v, R)

Input: root of a subtree of a KD-tree and a range R
Output: All points at leaves below v that lie in the range

1. If (v = leaf)
2. then report v’s point if in R
3. else if (region (lc(v)) fully contained in R)
4. then ReportSubtree (Rc(v))
5. else if (region (lc(v)) intersects R)
6. then SearchKdTree(lc(v), R)
7. if (region(rc(v)) fully contained in R)
8. then ReportSubtree(rc(v))
9. else if (region(rc(v)) intersects R)
10. then SearchKdtree(rc(v), R)
11. Endif

Note: need to know region(v)

- can precompute and store

- Computer during recursive calls, e.g.,

L(v) is v’s splitting line and           is left 
halfpland of l(v)

left)v(l)v(region)v(lc(region ∩=

left)v(l



Query time

Lemma A query with an axis parallel rectangle in a 
Kd-tree storing n points can be performed in 
O( ¯+k) time where k is the number of reported 
points.

n



Query time: Generalization to Higher 
dimensions

Construction is similar: one level for each dimension
Storage: O(d·n)
Time: O(d·nlogn)

Query time: O(n   +k)d
11−



Ra



- For each internal node v Tx let P(v) be set of points stored 
in leaves of subtree rooted at v.

 Set P(v) is stored with v as another balanced binary search 
tree Ty(v) (second level tree) on y-coordinate. (have pointer 
from v to Ty(v))

Range trees

Tx

v

P(v)

Ty(v)

P(v)

p1

p2
p3

p4

p5
p6

p7

p1 p2 p3 p4 p5 p6 p7

v
T4

p6 p5 p7

Ty(v)



Range trees

Lemma: A 2D-range tree with n points uses O(n log n) storage

Lemma: A query with axis-parallel rectangle in range tree 
for n points takes O(log2n+ k) time, where k = # 
reported points



Higher Dimensional Range Trees

1st level tree is balanced binary search tree on 1st

coordinate 
2nd level tree is (d-1) dimensional range tree for P(v)
- restricted to last (d-1)-coordinates of points
- this tree constructed recursively

- last tree is 1D balanced binary search tree on      -
coordinates

thd


	Geometric Range SearchingKinetic Data StructuresClustering Mobile Nodes
	Geometric Range Searching
	Motivation
	Motivation, Cnt’d.
	Motivation, Cnt’d.
	Range searching desiderata
	1-D Range Searching
	1-D Range Searching Ctnd.
	1-D Range Searching Ctnd.
	1-D Range Searching Ctnd.
	1-D Range Searching Ctnd.
	1-D Range Searching Ctnd.
	1-D Range Searching Ctnd.
	Key ideas
	KD-Trees (Higher dimensional generalization of 1D-Range Tree.)
	Build KD-Tree
	Build KD-Tree
	Build KD-Tree
	Build KD-Tree
	Build KD-Tree
	Build KD-Tree
	Build KD-Tree
	Build KD-Tree
	Build KD-Tree
	Complexity
	Complexity
	Algorithm: Search KD-Tree (v, R)
	Query time
	Query time: Generalization to Higher dimensions
	Range trees
	Range trees
	Range trees
	Higher Dimensional Range Trees

