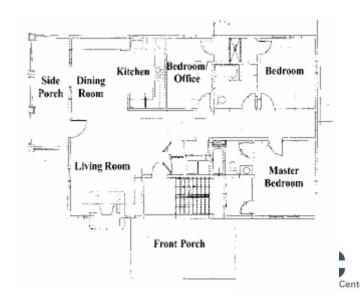
Sensor net applications Class wrap-up Project presentations

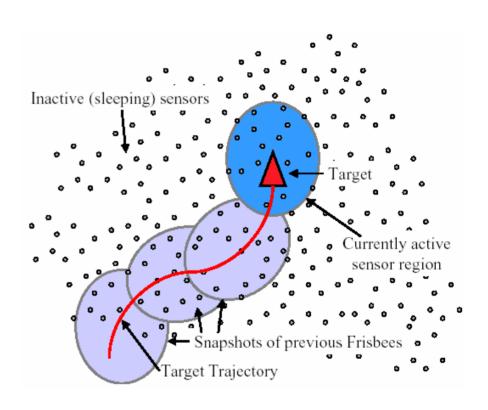
Feng Zhao

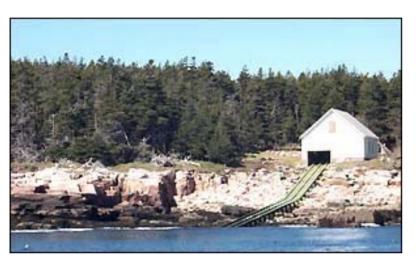
Palo Alto Research Center

Application papers


- Kidd et al., "The aware home: a living laboratory for ubiquitous computing."
- Cerpa et al., "Habitat monitoring: application driver for wireless communications technology."
- Mainwaring et al., "Wireless sensor networks for habitat monitoring."

A vision for smart homes [Kidd99]


- Application: elderly care in an assisted living env
- Issues
 - Context awareness
 - Interaction and behaviors
 - Privacy
- Technologies
 - Smart floor
 - RFID to tag objects
 - Wearable computers

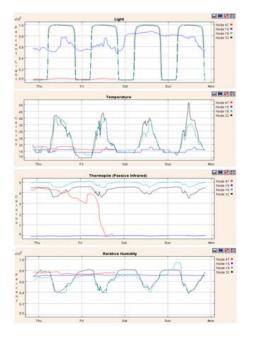

Monitoring bio-diversity [Cerpa01]

- Intended app: biocomplexity mapping
- Issues
 - power usage concern
 - Physical embeddedness
 - In-network processing and self configuration
- Technology components
 - Node wakeup
 - Node discovery and services
 - HW platforms: PC104 vs.
 RFID tags

Habitat monitoring on GDI [Mainwaring02] www.greatduckisland.net

Great Duck Island, 10 miles off the coast of Maine:

Remote wireless sensors are being used to find out more about birds in their natural habitat.



Petrel: Rarely seen by birdwatchers

"It will enable us to study ecosystems at a level that has not been conceived." Steve Katona, College of the Atlantic biologist and president

Wireless biological sensors placed in nests

Desiderata in designing sensor net applications

- Understand application characteristics
 - Physical phenomena and coupling → sensing modality
 - Stationary vs. dynamic stimuli
 - Local vs. no-local phenomena
- Understand task requirements
 - Localization vs. tracking
 - Detection and classification
 - Information delivery vs. gathering
 - Accuracy, misses/false alarms, latency, network dewell time
- Understand environmental constraints
 - Infrastructure vs. infrastructure-less
 - Instrumented vs. ad hoc deployment
 - » Examples: monitoring hazardous spills in an inaccessible area vs. security cameras at airport
 - Indoor vs. outdoor (weather proof)
 - Mobile vs. stationary nodes
- Understand system constraints
 - Cost and size considerations
 - Node capabilities (motes vs. general embedded linux box)
 - Battery operated vs. power-line
 - Radio range and communication protocols
 - One-shot vs. long-running systems

Review of the lectures

- Sensor tasking and control
 - Lectures 1, 2 and 9: tracking as a canonical problem, probabilistic formulation, IDSQ, relational reasoning, multicamera tracking
- Network discovery and initialization
 - Lecture 5: location discovery and maintenance, time synch
- Data aggregation and routing
 - Lectures 3 and 4: directed diffusion, geo and energy-aware routing, optimal node density/RF range
- Information management
 - Lectures 6 and 7: TinyDB and SQL-style querying, GHT and data-centric storage, range query, clustering
- Physical constraints
 - Lectures 1 and 8: energy constraints, energy-efficient routing, embedded OS (TinyOS and TinyGALS)

Some of the fundamental issues we've discussed

- Optimally direct resources towards tasks in hand
 - Information utility, resource (bandwidth, sensing, and processing) constraints, task objectives, usage requirement:
 - » E.g., directed diffusion, IDSQ, relational tracking
 - Resource allocation becomes a distributed constrained optimization
- Design networked embedded systems together with applications
 - Break barriers between applications, networking, database querying etc.
 - » E.g. Data routing and aggregation informed by tasks such as tracking
 - » E.g. Query processing as part of collaborative in-network signal processing (how many targets are there?)

Fundamental issues (continued)

- Organize network to match task structures
 - Cache information to support efficient querying and update
 » E.g., KDS
 - Reconfigure network as requirements or conditions change
 - » How often? Are changes predictable?
 - » How to locate and mitigate faults?
- Issues we have not explored as much
 - Fundamental limits of sensor networks
 - » "Network capacity" theorem for a sensor net
 - Is it information transport, detection, # of independent tasks to support?
 - Security and privacy for sensor networks
 - » How to prevent malicious injection of bogus data
 - Need lightweight authentication
 - » How to ensure privacy in a pervasive sensing world?

Class project presentations

- Rahul Biswas, Finding convex hulls of agents with sensor networks
- Dileep George and Ritesh Madan, Efficient path update algorithms for mobile nodes in a wireless ad hoc sensor network
- Jeffery Wu, Sensor node localization
- An Nguyen, Niloy Mitra, and Jaewon Shin, Mobile user localization using IEEE 802.11b WAPs

