

Finding Convex Hulls of Agents with Sensor Networks

Rahul Biswas CS428 Project June 5, 2003

Introduction

- Relational approach to algorithm design
- Determine if agent is surrounded by enemies
- Minimize number of sensor queries required

- Introduction
- Problem Definition
- Generative Model
- Inference in the Network
- Integrated Sensor Selection Techniques
- Experimental Results
- Conclusion

- Introduction
- Problem Definition
- Generative Model
- Inference in the Network
- Integrated Sensor Selection Techniques
- Experimental Results
- Conclusion

Problem Definition

- LF in convex hull with high probability?
- PIR and Amplitude sensors
- Known

```
LF
```

■ S₁ ... S_M

■ LS₁ ... LS_M

• C₁ ... C_T

(location of friendly agent)

(type of each sensor)

(locations of sensors)

(sensor observations)

- Unknown
 - LE₁ ... LE_N

(locations of enemy agents)

PIR Sensors

- Passive Infrared Intrusion Sensor
- Detects agents in triangle adjoining sensor
- Algorithm choose direction of sensing
- $P(d \mid d') = 1 0.2 * p$
- $P(d \mid \neg d') = 0.1$

Amplitude Sensors

- Detects enemy in circle surrounding sensor
- Returns presence and distance to nearest agent
- $P(d \mid d') = 1 0.2 * p$
- $P(d \mid \neg d') = 0.1$
- s ~ N(s',u)

- Introduction
- Problem Definition
- Generative Model
- Inference in the Network
- Integrated Sensor Selection Techniques
- Experimental Results
- Conclusion

SENSOR

LE

CCW

CONTAIN

Results of sensing

Locations on enemies

CCW over LE variables

LF in subset convex hull

SURROUNDED LF in entire convex hull

- Introduction
- Problem Definition
- Generative Model
- Inference in the Network
- Integrated Sensor Selection Techniques
- Experimental Results
- Conclusion

Inference in the Network

- Difficulties with traditional inference
- Posterior estimation via particle filters
 - Compute LE posteriors given SENSOR variables
 - Compute CONTAIN posteriors given LE
 - Bound SURROUNDED given CONTAIN

LE Posterior from SENSOR

Data Association Problem

- Impossible to differentiate enemy agents
- Find joint posterior over LE given SENSOR
- Run K-means to use in later inference
- Hard assignment of points to clusters
- Model selection for number of enemies

CONTAIN Posteriors Given LE

- Using CCW would yield inaccurate posteriors
- Sample from point clouds of each LE variable
- Count number of times assertion holds
- N-sided polygons often helpful

SURROUNDED Given CONTAIN

CONTAIN variables generally not independent

Independent if LE variables used disjoint

- Greedily choose pairwise disjoint variables
- Calculate posterior over chosen sets

- Introduction
- Problem Definition
- Generative Model
- Inference in the Network
- Integrated Sensor Selection Techniques
- Experimental Results
- Conclusion

Intrinsic Difficulty

- Inherently difficult scenarios:
 - When agent is not surrounded
 - When required agents outside sensor range
 - Friendly agent collinear with enemy agents
- Certain configurations confound particle filter
- Simple metric:
 - Inverse of distance to convex hull
 - Infinite if not surrounded

Sensor Utility Computation

- Want to maximize sensor utility
- Exact computation
 - Build search tree of sensor choices
 - Choose first sensor of best branch
 - Exponential in number of sensors
- Greedy computation
 - Depth limited search
 - Linear in inference time

Algorithm RANDOM

- Chooses sensors randomly
- Repetition of sensors never allowed
- Better than sensing at all sensors

Algorithm TRIANGLE

- Uses RANDOM until three affirmative readings
- Build triangles:
 - Two pre-determined enemy agent locations
 - One sensor location as potential agent location
 - Triangle contains friendly agent
- Choose unused sensor with most triangles

Algorithm ENTROPY

- Uses RANDOM until three affirmative readings
- Calculate entropy for each expected reading
 - Do calculation for each unused sensor
 - Only affirmative response calculated
- Choose unused sensor with lowest entropy
- Running time linear with number of sensors

- Introduction
- Problem Definition
- Generative Model
- Inference in the Network
- Integrated Sensor Selection Techniques
- Experimental Results
- Conclusion

Algorithm RANDOM

Algorithm TRIANGLE

Algorithm ENTROPY

Varying Number of Enemies

Varying Number of Sensors

Varying Sensor Composition

Varying Field of View

- Introduction
- Problem Definition
- Generative Model
- Inference in the Network
- Integrated Sensor Selection Techniques
- Experimental Results
- Conclusion

Conclusion

- Probabilistic model for Surrounded problem
- Inference technique for calculating posteriors
- Algorithms to choose subsequent sensors