

Resource Conservation in Sensor Networks

- Byers, J., and Nasser, G. "Utility-Based Decision-Making in Wireless Sensor Networks". Proceedings of IEEE MobiHOC 2000, Boston, MA, August 2000.
- Zhao, F., Shin, J., and Reich, J. "Information-Driven Dynamic Sensor Collaboration for Tracking Applications". Proceedings of IEEE Signal Processing Magazine, March 2002.

- Motivation
- Byers 2000
 - Cost-Utility Model
 - Algorithm
 - Experimental Results
- Zhao 2002
 - IDSQ Model
 - Algorithm
 - Experimental Results

- Motivation
- Byers 2000
 - Cost-Utility Model
 - Algorithm
 - Experimental Results
- Zhao 2002
 - IDSQ Model
 - Algorithm
 - Experimental Results

Power & Sensor Conservation

- Sensors have limited power
 - Reliant on non-renewable batteries
 - Battery technology not improving
- Conserving power
 - Increases sensor life
 - Makes sensor smaller
 - Decreases per sensor cost
- Also, minimize sensor count

Information Utility

Information has diminishing marginal returns

Marginal Information

Example: Monitoring Toxicity

- Assumptions:
 - Sensors connected to base station

- Motivation
- Byers 2000
 - Cost-Utility Model
 - Algorithm
 - Experimental Results
- Zhao 2002
 - IDSQ Model
 - Algorithm
 - Experimental Results

Network Model

- Assumptions:
 - Isotropic sensor transmission with fixed range R
 - No communication medium conflict
- Let G = (V,E)
 - V = Set of all operational sensors
 - E = Communication links between sensors
- An edge exists when the physical distance between a pair of nodes is below R

Sensing Model

- Nodes can operate in one of four modes:
 - Only Routing receives and transmits data
 - Only Sensing senses and transmits data
 - Both Routing and Sensing receives, senses, and transmits data
 - Idle does not participate

Data Aggregation

- Want to perform lossy compression of data to save communication costs
- Most useful when:
 - Information is of little value (e.g. little change)
 - Sensors provide redundant information
 - Large tree depth

Information Utility

- Let S be the sensors that are chosen to sense
- Model utility based on S such that there exists a mapping U: S* → [0,1]
- Possible utilities:

- S_t is the set of sensors sensing at time t
- $U(S_t)$ = utility from the sensors active at time t
- R_t is the set of sensors routing at time t
- c_s = sensing cost, c_t = transmitting cost, c_r = receiving cost, and c_a is aggregation cost

- S_t is the set of sensors sensing at time t
- $U(S_t)$ = utility from the sensors active at time t
- R_t is the set of sensors routing at time t
- c_s = sensing cost, c_t = transmitting cost, c_r = receiving cost, and c_a is aggregation cost

- S_t is the set of sensors sensing at time t
- $U(S_t)$ = utility from the sensors active at time t
- R_t is the set of sensors routing at time t
- c_s = sensing cost, c_t = transmitting cost, c_r = receiving cost, and c_a is aggregation cost

- S_t is the set of sensors sensing at time t
- $U(S_t)$ = utility from the sensors active at time t
- R_t is the set of sensors routing at time t
- c_s = sensing cost, c_t = transmitting cost, c_r = receiving cost, and c_a is aggregation cost

- S_t is the set of sensors sensing at time t
- $U(S_t)$ = utility from the sensors active at time t
- R_t is the set of sensors routing at time t
- c_s = sensing cost, c_t = transmitting cost, c_r = receiving cost, and c_a is aggregation cost

- S_t is the set of sensors sensing at time t
- $U(S_t)$ = utility from the sensors active at time t
- R_t is the set of sensors routing at time t
- c_s = sensing cost, c_t = transmitting cost, c_r = receiving cost, and c_a is aggregation cost

- S_t is the set of sensors sensing at time t
- $U(S_t)$ = utility from the sensors active at time t
- R_t is the set of sensors routing at time t
- c_s = sensing cost, c_t = transmitting cost, c_r = receiving cost, and c_a is aggregation cost

Objective Function

- Objective: maximize utility across all time
- Subject to:
 for each node across all time,
 all costs incurred by node ≤ power at node
- $\mathbf{c}_{s} = \text{sensing cost}$
- $\mathbf{c}_{\mathsf{t}} = \mathsf{transmitting} \; \mathsf{cost}$
- \mathbf{c}_{r} = receiving cost
- c_a is aggregation cost

- Motivation
- Byers 2000
 - Cost-Utility Model
 - Algorithm
 - Experimental Results
- Zhao 2002
 - IDSQ Model
 - Algorithm
 - Experimental Results

Adaptive Routing Algorithm

- Base station decides that N nodes must sense
- Variant of N Participants (Information Theory)
- Invariant: sense only if all children sensing

Inheriting Orphaned Subtrees

- Leaf failure is rectified via N Participants
- If routing node fails:
 - Each node independently emits search ping
 - Connected nodes within distance R become prospective parents
 - Orphans choose parent at minimum depth in tree

Inheriting Orphaned Subtrees

- Leaf failure is rectified via N Participants
- If routing node fails:
 - Each node independently emits search ping
 - Connected nodes within distance R become prospective parents
 - Orphans choose parent at minimum depth in tree

Inheriting Orphaned Subtrees

- Leaf failure is rectified via N Participants
- If routing node fails:
 - Each node independently emits search ping
 - Connected nodes within distance R become prospective parents
 - Orphans choose parent at minimum depth in tree

- Motivation
- Byers 2000
 - Cost-Utility Model
 - Algorithm
 - Experimental Results
- Zhao 2002
 - IDSQ Model
 - Algorithm
 - Experimental Results

Simulated Results

Heuristic	Lifetime	Total Utility	Total Energy Consumed	Utility/Energy
NAIVE	92.98	62.3	22039.3	.002827
SIMPLE UTIL	349.633	64.855	15418.01	.004206
SPEC_INV	216	104.87	14505.54	.00723

- Motivation
- Byers 2000
 - Cost-Utility Model
 - Algorithm
 - Experimental Results
- Zhao 2002
 - IDSQ Model
 - Algorithm
 - Experimental Results

Tracking Scenario

Query must be routed to the node best able to answer it

 Sensor a senses the location of the target and chooses the next best sensor

Sensor b does the same

Sensor d both chooses the next best sensor and also sends a reply to the query node

Sensor f
 loses the
 target and
 sends the
 final
 response
 back to the
 query node

IDSQ: Information Driven Sensor Querying and Data Routing

- Algorithm to repeatedly choose next best sensor
- Objective:

Cost of Acquiring z_j

$$M(p(\mathbf{x} \mid \mathbf{z}_1, \dots, \mathbf{z}_j)) = \alpha \cdot \varphi_{Utility}(p(\mathbf{x} \mid \mathbf{z}_1, \dots, \mathbf{z}_j)) - (1 - \alpha) \quad \varphi_{Cost}(\mathbf{z}_j)$$

Net Value of Acquiring z_i

Value of Acquiring z_i

Relative weighting of utility and cost

Aside: Mahalanobis Distance

The quantity r in

$$r^2 = (x - m_x)' C_X^{-1} (x - m_x)$$

is called the Mahalanobis distance from the feature vector \mathbf{x} to the mean vector \mathbf{m}_{x} , where C_x is the covariance matrix for \mathbf{x}

(all orange points are Mahalanobis equidistant)

Information Utility

- Target location estimated from observations
 z₁ through z_{i-1}
- Choose next observation providing maximal information utility when incorporated into belief:

$$\hat{j} = \operatorname{argmax}_{j \in \mathcal{V}} \pmb{\varphi}_{Utility} (p(\mathbf{x} | \{\mathbf{z}_i\}_{i \in U} \cup \{\mathbf{z}_j\}))$$
/ New Information

Current Information

Candidate Utility 1: Relative Entropy

Information utility:

$$\varphi(p(\mathbf{x} | \{\mathbf{z}_i\}_{i \in U} \cup \{\mathbf{z}_j\})) \triangleq -H_p(x)$$

- Quick Definitions
 - Entropy is uncertainty
 - Relative Entropy is difference in entropy
- Best metric but impossible to implement

Candidate Utility 2: Mahalanobis Distance

Information utility:

$$\varphi(\mathbf{x}_{j}, \hat{\mathbf{x}}, \hat{\mathbf{\Sigma}}) = -(\mathbf{x}_{j} - \hat{\mathbf{x}})^{T} \hat{\mathbf{\Sigma}}^{-1} (\mathbf{x}_{j} - \hat{\mathbf{x}})$$
Sensor Position Mean, Covariance of Belief

- Works well for Gaussian distributions
- Does not generalize well to heterogeneous sensors

Candidate Utility 3: Expected Relative Entropy

- Observation at sensors unknown
- Need observations for relative entropy
- Posterior gives expected observations
- Useful for finding expected relative entropy

Overview

- Motivation
- Byers 2000
 - Cost-Utility Model
 - Algorithm
 - Experimental Results
- Zhao 2002
 - IDSQ Model
 - Algorithm
 - Experimental Results

Experimental Results: Sensor Choice

Original Belief

Using Adjacent Sensor

Using Mahalanobis Information Utility

Experimental Results: Euclidean Distance to Mean

(heuristic prevents node from being selected N times)

Experimental Results: Mahalanobis Distance to Mean

Experimental Results: Entropy (unattainable)

Experimental Results: Relative Entropy

Experimental Results: Tracker Performance

	# Lost tracks/	Mean error
	total runs	
(a) Nearest neighbor	75/80	34.39
(b) Nearest neighbor with heuristic	37/80	44.79
(c) Mahalanobis distance	70/80	24.86
(d) Mahalanobis distance with heuristic	32/80	44.20
(e) Entropy	0/80	5.13
(f) Entropy with heuristic	0/80	5.05
(g) Relative entropy	0/80	8.09
(h) Relative entropy with heuristic	2/80	10.79

Conclusion

- Power-aware sensor management:
 - Increases sensor lifespan
 - Decreases number of sensors needed
- Information utility:
 - Directs sensing to find more valuable information
 - Balances power consumption and information acquisition