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Power & Sensor Conservation
Sensors have limited power

Reliant on non-renewable batteries
Battery technology not improving

Conserving power
Increases sensor life
Makes sensor smaller
Decreases per sensor cost

Also, minimize sensor count
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Information Utility
Information has diminishing marginal returns
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Example: Monitoring Toxicity
Assumptions:

Sensors connected to base station
Sensors cannot be replaced Sensors

Toxic Chemicals
Base

Station
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Network Model
Assumptions:

Isotropic sensor transmission with fixed range R
No communication medium conflict

Let G = (V,E)
V = Set of all operational sensors
E = Communication links between sensors

An edge exists when the physical distance 
between a pair of nodes is below R
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Sensing Model
Nodes can operate in one of four modes:

Only Routing – receives and transmits data
Only Sensing – senses and transmits data
Both Routing and Sensing – receives, senses, and 
transmits data
Idle – does not participate
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Data Aggregation
Want to perform lossy compression of data to 
save communication costs
Most useful when:

Information is of little value (e.g. little change)
Sensors provide redundant information
Large tree depth
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Information Utility
Let S be the sensors that are chosen to sense
Model utility based on S such that there exists 
a mapping U: S* → [0,1]
Possible utilities:



12

Costs
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St is the set of sensors sensing at time t
U(St) = utility from the sensors active at time t
Rt is the set of sensors routing at time t
cs = sensing cost, ct = transmitting cost,
cr = receiving cost, and ca is aggregation cost
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Objective Function
Objective: maximize utility across all time
Subject to:
for each node across all time,
all costs incurred by node ≤ power at node
cs = sensing cost
ct = transmitting cost
cr = receiving cost
ca is aggregation cost
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Network Initialization
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Adaptive Routing Algorithm
Base station decides that N nodes must sense
Variant of N Participants (Information Theory)
Invariant: sense only if all children sensing
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Inheriting Orphaned Subtrees
Leaf failure is rectified via N Participants
If routing node fails:

Each node independently emits search ping
Connected nodes within distance R become 
prospective parents
Orphans choose parent at minimum depth in tree
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Simulated Results
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Tracking Scenario
Query must 
be routed 
to the node 
best able to 
answer it
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Tracking Scenario



38

Tracking Scenario



39

Tracking Scenario



40

Tracking Scenario
Sensor a 
senses the 
location of 
the target 
and 
chooses the 
next best 
sensor
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Tracking Scenario
Sensor b 
does the 
same
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Tracking Scenario



43

Tracking Scenario
Sensor d 
both 
chooses the 
next best 
sensor and 
also sends 
a reply to 
the query 
node
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Tracking Scenario
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Tracking Scenario
Sensor f 
loses the 
target and 
sends the 
final 
response 
back to the 
query node
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IDSQ: Information Driven Sensor 
Querying and Data Routing

Algorithm to repeatedly choose next best 
sensor
Objective:

Cost of Acquiring zj

Net Value of Acquiring zj

Relative weighting of utility and cost

Value of Acquiring zj
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Aside: Mahalanobis Distance
The quantity r in

r2 = (x – mx)’ CX
-1 (x – mx) 

is called the Mahalanobis distance from the 
feature vector x to the mean vector mx, 
where Cx is the covariance matrix for x

(all orange points are Mahalanobis equidistant)
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Information Utility
Target location estimated from observations 
z1 through zj-1

Choose next observation providing maximal 
information utility when incorporated into 
belief:

New Information
Value of Information

Current Information
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Candidate Utility 1:
Relative Entropy

Information utility:

Quick Definitions
Entropy is uncertainty
Relative Entropy is difference in entropy

Best metric but impossible to implement
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Candidate Utility 2:
Mahalanobis Distance

Information utility:

Works well for Gaussian distributions
Does not generalize well to heterogeneous 
sensors

Sensor Position Mean, Covariance of Belief
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Candidate Utility 3:
Expected Relative Entropy

Observation at sensors unknown
Need observations for relative entropy
Posterior gives expected observations
Useful for finding expected relative entropy
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Experimental Results:
Sensor Choice

Using Mahalanobis
Information Utility

Original Belief Using Adjacent
Sensor
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Experimental Results:
Euclidean Distance to Mean

(heuristic prevents node from being selected N times)
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Experimental Results:
Mahalanobis Distance to Mean
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Experimental Results:
Entropy (unattainable)
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Experimental Results:
Relative Entropy
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Experimental Results:
Tracker Performance
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Conclusion
Power-aware sensor management:

Increases sensor lifespan
Decreases number of sensors needed

Information utility:
Directs sensing to find more valuable information
Balances power consumption and information 
acquisition
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