2003 Spring Qtr, CS 428 Information Processing in Sensor Network by Prof. Guibas, Prof. Zhao

Mobile User Localization Using IEEE 802.11b WAPs

An Nguyen, Niloy J. Mitra and Jaewon Shin

Movitation

- Location service for Mobile Computing Environment
- Installing extra infrastructure (beacons etc)
 - Fine resolution: << meters</p>
 - High cost
- Using existing infrastructure (IEEE 802.11a/b/g WAP's)
 - Crude resolution: ~ meters
 - No cost

Previous Works

- MSR RADAR
 - Pioneered the idea of using WAP's for the mobile user localization
 - No tracking
- Rice University
 - Used HMM algorithm for tracking

Our Approach: Bayesian Filtering

 Bayesian Filtering: General probabilistic framework for combining the prior knowledge (how things are moving in general) with the new information (what you observe)

$$p(x^{(t+1)} \mid \overline{z^{(t+1)}}) = C \cdot p(z^{(t+1)} \mid x^{(t+1)}) \cdot \int p(x^{(t+1)} \mid x^{(t)}) \cdot p(x^{(t)} \mid \overline{z^{(t)}}) d\mathbf{x}^{(t)}$$

```
x^{(t)} \in \{s_1, \dots, s_N\}, \ N : \# \text{ the data collection locations.}
z^{(t)} \in [\min\_SNR, \max\_SNR]^M, \ M : \# \text{ WAP's}
\overline{z^{(t)}} = \{z^{(0)}, \dots, z^{(t)}\}
p(x^{(t+1)} \mid x^{(t)}) : \text{ Dynamic model (prior knowledge)}
p(z^{(t+1)} \mid x^{(t+1)}) : \text{ Observation model (new information)}
```

Our Approach: Dynamic Model

$$p(x^{(t+1)} | x^{(t)})$$

Q) How to model p_{ij} ? Easy

Our Approach: Observation Model I

Q) How to model $p(z^{(t)} | x^{(t)} = s_i)$? Hard!

Our Approach: Observation Model II

- Q) How to model $p(z^{(t)} | x^{(t)} = s_i)$?
 - Non-parametric model: not enough data and ...
 - Parametric model:
 - Gaussian $(\exp(-cx^2))$

Data Collection I

Data Collection II

Testbed

Result

- Real data playback
- Real demo

Conclusion and Future Works

- Impulsive nature of RF signal characteristics seems to be better described by Cauchy distribution.
- When the system has "meaningful" reading, the tracking performance seems reasonable.
- Future works
 - No quantitative analysis done
 - Passive listening → Active probing?
 - Tracking in continuous state space
 - Extend this to IPAQ
 - and many others