
# Information management (1)

Feng Zhao





## **Papers**

- Querying and in-network aggregation
  - Madden et al., "TAG: a Tiny AGgregation Service for Ad Hoc Sensor Networks."
  - Hellerstein, "Beyond Averages: Towards Sophisticated Sensing with Queries."
- Data-centric storage and access
  - Ratnasamy et al., "GHT: A Geographic Hash Table for Data-Centric Storage."

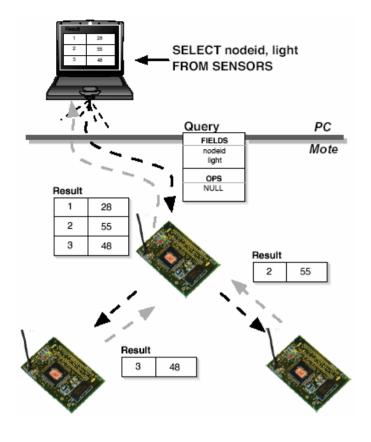


#### **Sensor Network Abstraction**

User Queries, External Database

In-network: Application processing, Data aggregation, Query processing

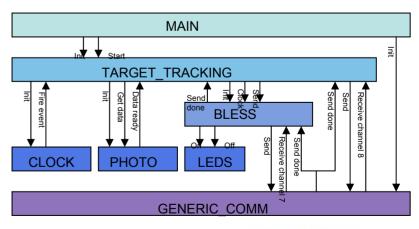
Data dissemination, storage, caching


Adaptive topology, Geo-Routing

MAC, Time, Location

Phy: comm, sensing, actuation, SP

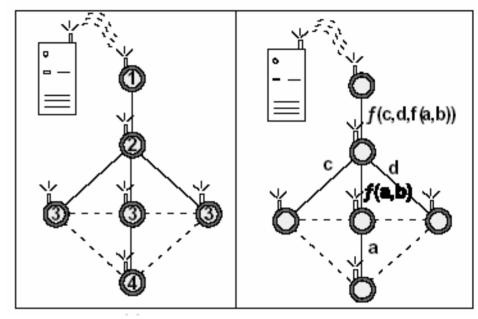
- Characteristics: distributed, resource-constrained, failure prone
  - How does an application user specify a problem?
  - How does a system developer model the capabilities of the system?
  - What features should a lower layer expose to higher layers?
- From data storage point of view: think of a sensor net as a distributed database
  - How is data stored after sensing?
  - What is the interface to the network?
  - How does an external query find the data in an efficient manner?


Figure source: Estrin et al.



### **TinyDB meets TinyOS**







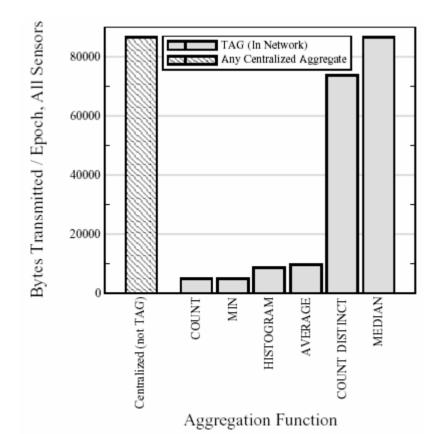



#### Querying sensor networks: TAG and Tiny DB

- SQL-like declarative interface
  - SELECT max(temp), room FROM sensors
    WHERE floor =6
    GROUP BY room
    HAVING max(temp) > threshold
    EPOCH DURATION 30sec
- In-network aggregation to reduce message count
  - See example on the right
- Manage transmission and aggregation:
  - A hierarchical routing tree
  - Epoch-based time division» Time synch is important
  - Repair routing



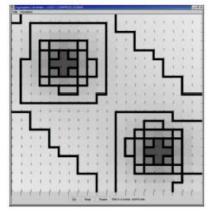
Server-based


**TinyDB** 

Left: centralized, requiring 16 message to be sent. Right: in-network aggregation, requiring 6 messages to be sent

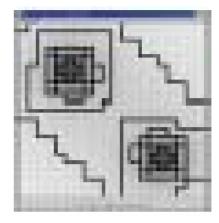


#### Aggregates and their efficiency in TAG


|                            | MAX, MIN     | COUNT, SUM   | AVERAGE   | MEDIAN   | COUNT DISTINCT 4 | HISTOGRAM <sup>5</sup> |
|----------------------------|--------------|--------------|-----------|----------|------------------|------------------------|
| Duplicate Sensitive        | No           | Yes          | Yes       | Yes      | No               | Yes                    |
| Exemplary (E), Summary (S) | Е            | S            | S         | Е        | S                | S                      |
| Monotonic                  | Yes          | Yes          | No        | No       | Yes              | No                     |
| Partial State              | Distributive | Distributive | Algebraic | Holistic | Unique           | Content-Sensitive      |

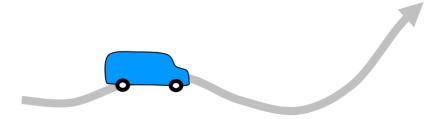


Some can be decentralized better than others!




## Extend TAG beyond averages to spatiotemporal aggregates




Geometry

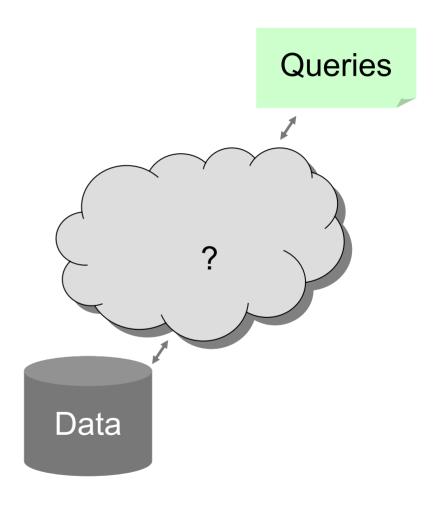
Example: isobar mapping



Resolution

Example: wavelet compression




Time (Example: tracking)

- Who triggers the aggregation?
- Interface between querying and tracking?

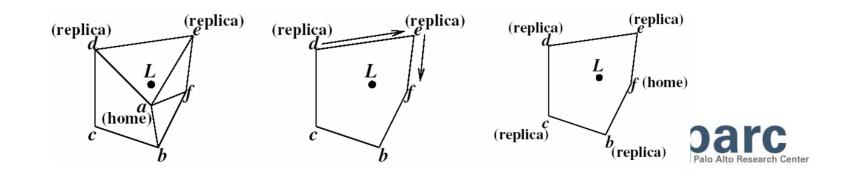


## **Data Centric Storage**

- TinyDB routing tree or fixed storage point supports only limited access patterns
- Need more general indexing scheme
  - Scalable
  - Load balance
  - Tolerant to failures and changes
    - » Persistent
    - » Consistent






## **Geographic Hash Table**

- Data is indexed by geographic coordinates
  - Data centric: data is named by physical attributes external to the nodes or network topology
  - Geographic hashing
    - » Key of a key-data pair hashed to geo location (for both PUT and GET)
    - » Load balanced
  - Storage localization:
    - » GPSR geographic routing (discussed earlier) to find storage node, defined as the node nearest to the geo location



## Locate storage node using GPSR

- Home node: closest to the geo location
- Replica nodes: those along the perimeter enclosing the geo location
- Perimeter Refresh Protocol to ensure persistency and consistency
  - Node may fail or move
  - Home node periodically sends out refresh packet to the geo location. This updates the home node when necessary
  - Time-out mechanism to deal with home node failure

