Ad Hoc Networks

- Properties
 - Wireless nodes
 - Shared communication
 - Capable of movement
 - Node positions unknown
 - Limited battery life
 - Limited bandwidth
- Considerations
 - Radio power vs. transmission bandwidth (Royer, et al.)
 - Radio power vs. connectivity (Santi, et al.)

An Analysis of the Optimum Node Density for Ad hoc Mobile Networks

E. Royer, P. Melliar-Smith, L. Moser

Increasing Radio Power

Pros

- Reduce path length
- Less load on network

Cons

- A greater proportion of traffic heard by a node is not addressed to it
- A node will be able to transmit less frequently

What is optimum radio power/transmission radius?

Motivation

- Kleinrock and Silvester (1978) result:
 - Analytical analysis of tradeoff between transmission radius and bandwidth in static network
 - Adjust transmission radius to include 6 neighbors for optimum result
- This paper:
 - Optimum for mobile nodes?
 - By simulation

Problem Setting

- Mobile Ad hoc network
- AODV routing protocol
- MAC protocol IEEE 802.11 DCF (CSMA/CA)
- Simulation using GloMoSim
- Radio model
 - Free space propagation (1/r²)
 - Receiver has capture capability
 - Data rate is 2Mb/sec
- 100 nodes in 1km x 1km
- 40 source nodes sending twelve 512 byte packets per second

(a) RREQ Propagation

(b) RREPs and Subsequent Data Path

Motion model

- Random waypoint
- Random direction
- Modified random direction

Number of Packets Delivered

Normalized Throughput

Average path length

Probability of route

A Probabilistic Analysis for the Range Assignment Problem in Ad Hoc Networks

P. Santi, D. Blough, F. Vainstein

Range assignment problem

- Problem of ensuring connectivity while minimizing the transmission range (minimizing the energy consumption)
- Optimum solution in polynomial time in1d
- NP-hard in 2d and 3d

Problem Setting

- Homogeneous assignment r
- Node positions unknown
- n nodes are distributed in d dimensional cube of side length L
- Deterministic solution: r = L * sqrt(d)
- Probabilistic solution?

a.a.s.

- Asymptotically almost surely:
 - P(Event_L) \rightarrow 1 as L \rightarrow ∞

Result 1: Bound for not a.a.s. connected (in 1,2,3d)

- rdn in O(Ld), not a.a.s. connected
- ◆rdn<<Ld, a.a.s. disconnected</p>
- Short outline:
 - P(Connected) = 1 P(Disconnected)
 - P(Disconnected)>=P(IsolatedNode(i))
 - So if P(IsolatedNode(i)) → ≥ > 0 as L→∞, then P(Connected) does not approach 1 and network is not a.a.s. connected

Result 2: Probability of connected in 1d

- $P(Connected) >= 1 (L-r)(1-r/L)^n$
- Short outline:
 - Compute upper bound of P(Disconnected)
 - P(Connected) >= 1 upper bound of P(Disconnected)

Result 3: Bound for a.a.s. connected in 1d

- ◆Assume r << L</p>
- If $rn \in \Omega(L \log L)$, then a.a.s. connected
- Short outline
 - P(Connected) >= 1 (L-r)(1-r/L)ⁿ
 - Apply l'Hopital's rule

Simulation: rdn=Ld verify Result 1

Percentage of connected

$$n = L^{1/2}$$

 $r = c_d L^{(d-1/2)/d}$

$$c_1 = 3,$$
 $c_2 = 2,$
 $c_3 = 1,5$

We expect not a.a.s. connected

Simulation: rn=L log L for 1d verify Result 3

$$n = L^{1/2}$$

 $r = k L^{1/2} log L$

We expect a.a.s. connected

Simulation: rdn=Ld log L for 2d

$$n = L^{1/2}$$

 $r = kL^{3/4}(logL)^{1/2}$

a.a.s. connected?

Simulation: rdn=Ld log L for 3d

$$n = L^{1/2}$$

 $r = kL^{5/6}(log L)^{1/3}$

a.a.s. connected?

Num. Neighbors/log L in 2d

Summary/Discussion

- Optimum transmission radius is an important problem
- Many quantities to optimize for:
 - Bandwidth/Throughput
 - Connectedness
 - Energy
 - Lack of holes in the network