CS 428 Information Processing f or Sensor Network

Jaewon Shin Stanford University

Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Network

Charlermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin

Building Efficient Wireless Sensor Networks with Low-Level Naming

John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin and Deepak Ganesan

Contribution

 "Directed Diffusion": New paradigm for communication primitive of sensor network

 "Low-level Naming ...": Implementation of directed diffusion using real hardware and verification of the original claims.
 (in-network processing ...)

Motivation

	General Network	Sensor Network
Goal	Share resources	Specific Task
Whom to talk to?	Node ID	Data, Sensing Modalities, Location → Node Attributes
In-network Processing	Not Really. All we care is end-to-end comm	Essential for Energy- Efficiency

→ Need a Data-Centric communication paradigm that allows efficient in-network processing!

Scenario

Simple tracking: A user sends to a node (sink) a query/task
 "Report a position of a four-legged animal in region X".

Main Idea

- Sink (user) propagates "interest".
 - Interest = (attribute, value) pairs
- Source (data provider) sense/process "data".
 - Data = (attribute, value) pairs
- Intermediate nodes: In-network Processing
 - Caching, Aggregation, Transcoding etc.

Main Idea: Example

Local Behavior Choices

1. For propagating interests

In our example, flood

More sophisticated behaviors possible: e.g. based on cached information, GPS

2. For setting up gradients

Highest gradient towards neighbor from whom we first heard interest

Others possible: towards neighbor with highest energy

3. For data transmission

Different local rules can result in single path delivery, striped multipath delivery, single source to multiple sinks and so on.

4. For reinforcement

reinforce one path, or part thereof, based on observed losses, delay variances etc.

other variants: inhibit certain paths because resource levels are low

Directed Diffusion Summary

- Application-aware communication primitives
 - expressed in terms of named data (not in terms of the nodes generating or requesting data)
- Consumer of data initiates interest in data with certain attributes
- Nodes diffuse the interest towards producers via a sequence of local interactions
- This process sets up gradients in the network which channel the delivery of data
- Reinforcement and negative reinforcement used to converge to efficient distribution
- Intermediate nodes opportunistically fuse interests, aggregate, correlate or cache data

Second Paper

- Actual implementation of directed diffusion on testbed.
- Matching Rules
- Filters
 - Aggregation
 - Nested Query

Matching Rule

- Interest(and Data): (attribute-value-operation) tuple
- Operators
 - Actual: IS
 - Formal: EQ, NE, LE, GE, EQ_ANY
- Example of interest: (type EQ four-legged animal-search, interval IS 20ms, duration IS 10 seconds, x GE –100, x LE 200, y GE 100, y LE 100, class IS interest)
- Example of data: (type IS four-legged-animal-search, instance IS elephant, x IS 125, y IS 220, intensity IS 0.6, confidence IS 0.85, timestamp IS 1:20, class IS data)
- Complete match ← → one-way match in both direction

Filter

- A mechanism for allowing application-specific code to run in the network and assist diffusion and processing.
- Examples of Filter Application
 - Aggregation
 - Nested Query

Results I: Simulation

Average dissipated energy

Average delay

Results II: Simulation

Results III: Simulation

Negative Reinforcement

Duplicate suppression

High idle radio power

Results IV: Experiment on testbed

Energy efficiency measure (Bytes/Event)

Effect of nested query

Results V: Experiment on testbed

Matching Performance as a function of # attributes

Conclusions/Discussions

- Directed Diffusion and its implementation
- New, energy efficient communication primitives in sensor network
- Not obvious how to write application on top of directed diffusion. (Directed diffusion itself is an application.)
- Importance of energy efficient MAC layer protocol