Information Processing in Microsensor Networks: an introduction

Feng Zhao

Palo Alto Research Center (formerly Xerox PARC)

http://www.parc.com/zhao

Smart Sensors and Sensor Net

UCLA WINS

Environmental sensing

-Traffic, habitat, hazards, security, anti-terrorism

Industrial sensing

- –Machine monitoring and diagnostics
- -Power/telecom grid monitoring

Human-centered computing

-Context-aware environment

Untethered micro sensors will go anywhere and measure anything -traffic flow, water level, number of people walking by, temperature. This is developing into something like a nervous system for the earth.

-- Horst Stormer in Business Week, 8/23-30, 1999.

Wireless sensor trend

Of 9.6 billion uP to be shipped in 2005, 98% will be embedded processors!

Riding on Moore's law, smart sensors get

More powerful

Sensoria WINSNG 2.0 CPU: 300 MIPS 1.1 GFLOP FPU 32MB Flash 32MB RAM Sensors: external

Easy to use

HP iPAQ w/802.11 CPU: 240 MIPS 32MB Flash 64MB RAM Both integrated and offboard sensors

Inexpensive & simple

Crossbow MICA mote 4 MIPS CPU (integer only) 8KB Flash **512B RAM** Sensors: on board stack

Super-cheap & tiny

Smart Dust (in progress) CPU, Memory: TBD (LESS!)

Sensors: integrated

Sources of constraints:

- Energy and physics of sensing, processing, and communication
- Task requirements from application domains

Sample Sensor Hardware: Berkeley motes

sensor

• CPU:

- 8-bit, 4 MHz Atmel processor
- No floating-point arithmetic support

Radio:

- 916 MHz RFM @10Kbps
- Distance 30-100ft
- Adjustable strength for RF transmission & reception

• Storage:

- 8 KB instruction flash
- 512 bytes data RAM
- 512 bytes EEPROM (on processor)

OS:

• TinyOS, event driven (3.5KB code space)

Sensors:

- 10-bit ADC mux'd over 7 analog input channels
- Sensing: light, sound, temperature, acceleration, magnetic field, pressure, humidity, RF signal strength

Hardware

Power Breakdown...

	Active	Idle	Sleep
CPU	5 mA	2 mA	5 µA
Radio	7 mA (TX)	4.5 mA (RX)	5 µA
EE-Prom	3 mA	0	0
LED's	4 mA	0	0
Photo Diode	200 μΑ	0	0
Temperature	200 μΑ	0	0

Rene motes data, Jason Hill

Computation/communication ratio:

Rene motes:

• Comm: (7mA*3V/10e3)*8=16.8µJ per 8bit

Comp: 5mA*3V/4e6=3.8 nJ per instruction

Ratio: 4,400 instruction/hop

Sensoria nodes:

• Comm: (100mW/56e3)*32=58µJ per 32bit

Comp: 750mW/1.1e9=0.7nJ per instruction

• Ratio: 82,000 instruction/hop

Panasonic CR2354 560 mAh

This means

 Lithium Battery runs for 35 hours at peak load and years at minimum load, a three orders of magnitude difference!

Distributed sensor net: multi-hop RF advantages

RF power attenuation near ground:

$$P_{receive} \propto \frac{P_{send}}{r^{\alpha}}, \quad \alpha:3-5$$

Or equivalently, $P_{send} \propto r^{\alpha} P_{receive}$

Power advantage:

$$\frac{P_{send(Nr)}}{N \cdot P_{send(r)}} = \frac{(Nr)^{\alpha} P_{receive}}{N \cdot r^{\alpha} P_{receive}} = N^{\alpha - 1}$$

Distributed sensor net: detection and SNR advantages

Sensors have a finite sensing range. A denser sensor field improves the odds of detecting a target within the range. Once inside the range, further increasing sensor density by *N* improves the SNR by $10\log N$ db (in 2D). Consider the acoustic sensing case:

Acoustic power received at distance r: $P_{receive} \propto \frac{P_{source}}{r^2}$ Signal-noise ratio (SNR):

$$SNR_r = 10\log P_{source} - 10\log P_{noise} - 20\log r$$

Increasing the sensor density by a factor of *N* gives a SNR advantage of:

$$SNR_{\frac{r}{\sqrt{N}}} - SNR_r = 20\log\frac{r}{\frac{r}{\sqrt{N}}} = 10\log N$$

Tracking as a canonical problem for studying information processing in sensor networks

Sensor Network Tracking

- 17 nodes (6 DOA, 11 amplitude)
- Scale: 1 square=5 ft.
- 0.5 sec update interval
- · Packet loss significant

Leader Node

Data Packet
Control Packet
Broadcast control

A tracking scenario

(SN)

(c)

 (\mathbf{d})

(SN)

 (\mathbf{e})

(SN)

(SN)

Constraints:

- Node power reserve
- RF path loss
- Packet loss
- Initialization cost

(SN)

• ...

(SN)

(SN)

Bearing se sors (eg. PIR, beam ormer)

Range sensors (eg. Omni-microphone)

- 1. **Discovery**: Node *a* detects the target and initializes tracking
- 2. **Query processing**: User query *Q* enters the net and is routed towards regions of interest
- 3. **Collaborative Processing**: Node *a* estimates target location, with help from neighboring nodes
- 4. **Communication protocol**: Node a may hand data off to node b, b to c, ...
- 5. **Reporting**: Node *d* or *f* summarizes track data and send it back to the querying node

What if there are other (possibly) interfering targets?

What if there are obstacles?

Fundamental issues to address

- What do nodes know when they wake up
 - How do nodes discover each other, time synch, location?
- What is routing
 - Address-centric or data-centric? Is TCP/IP appropriate? What are the performance metrics?
- What is information theory for sensor nets?
 - What is the minimum number of sensors for recovering a continuous signal field? Nyquist sampling theorem for sensor net?
 - What are the compression schemes?
- What is data base for sensor net?
 - How is the data stored, organized, and retrieved? Is there a SQL interface?
- How is it connected to the Internet?
 - What are the edge network protocols? BGP?
 - How will a user browse the data? Google™ for physical world?
- How is it programmed
 - Is there an OO programming model for embedded systems?
 - What are the abstraction layers? What is the "sensor net stack"?

What is routing in a sensor net?

What is unique about sensor networks?

Unique characteristics

- Coverage
 - »Distance/area covered, number of events, number of active queries
- Spatial diversity
 - »Dense spatial sampling, multi-aspect sensing, multiple sensing modalities
- Survivability
 - »Robust against node/link failures
- Ubiquity
 - »Quick/flexible deployment, ubiquitous access, info timeliness

Particularly suited for detecting, classifying, tracking

- Non-local spatio-temporal events/objects
 - »Simultaneous dense spatial sampling to identify and track large, spatially extended event
 - »Continuous spatio-temporal sampling to track moving objects
- Low-observable events
 - »Distributed information aggregation
 - »Non-local information validation

Sensor network research is largely driven by applications ...

Habitat monitoring: www.greatduckisland.net

Great Duck Island, 10 miles off the coast of Maine:

Remote wireless sensors are being used to find out more about birds in their natural habitat.

Petrel: Rarely seen by birdwatchers

"It will enable us to study ecosystems at a level that has not been conceived." Steve Katona, College of the Atlantic biologist and president

Wireless biological sensors placed in nests

Monitoring Plants at Huntington Botanical Garden

A Chemical Plume Tracking Scenario

- Ad hoc, just-in-time deployment of sensor nets for emergency response
- ■The Valley Authority just declared a regionwide emergency: A large-scale chemical gas leak has been detected at a plant 20 minutes ago
- National Guard has been activated to evacuate nearby towns, and to close roads/bridges
- ■To get a real-time situational assessment of the extent and movement of the gas release and inform the evacuation, the CS428 SWAT Team is called in
- ■Three small UAVs are immediately launched from an open field 15 miles south of the attack site, each equipped with 1000 tiny chemical sensing nodes
- Upon flying over the vicinity of the attack site, the sensor nodes are released
- The nodes self-organize into an ad hoc network, while airborne, and relay the tracking result back to the emergency response command center
 - –Where is the plume, how big, how fast, which direction?

Some of the possible project ideas

- Counting distinct objects
- Routing around "forbidden" zones
- Mobile sensor to improve object localization
- Query optimization for multi-object tracking
- CCW relation tracking
- "Am_I_Surrounded" tracking

Assumptions

- Each node has a number of on-board sensors (in case there is only one sensor, we use "sensor" and "node" interchangeably)
- Each node can communicate wirelessly with other nodes within a fixed radius *R* (larger than the mean inter-node distance)
- Nodes are time-synchronized to a global clock
- Targets are point sources of signals; target signals propagate isotropically in the physical space, and attenuate as a monotonically decreasing function of the distance from the source
- Each sensor has a finite sensing range, determined by a fixed minimal amplitude a sensor can sense. Signals of two targets sum at a sensor. Here we assume amplitude sensing (e.g. to infer distance to the target). DOA or restricted-view sensing (e.g., camera) may provide new constraints.
- Onboard battery power is the main limiting factor, as well as network bandwidth and latency

Routing around "forbidden" zones

Problem spec

- Each node knows locations of nodes within RF range and that of destination node
- There are two forbidden zones where nodes are not available for sensing or comm.
 - Stationary zones (e.g., holes in the net)
 - Moving zones (e.g., quiet zones to evade enemy eavesdropping)

Task

- Discover routing path with minimal # hops
- Maintain path, when the forbidden zones move, requiring
 - minimal repair to the current path
- **Bonus point**: Suppose data along the path is aggregated for locating a stationary target in the middle of the field. Do the same as above, plus optimizing for localization accuracy as well

Mobile sensor to improve object localization

Problem spec

- Sensors track boundary of an polygon with *n* sides
- Each sensor can detect whether it is covered by the object or not, and can move in physical space

Task

- Determine which subset of sensors to move, to maximize estimation improvement while minimizing the total distance traveled
- **Bonus point**: Suppose only a fraction of the sensors can move, determine the optimal fraction for detecting a given shape

Query optimization for multi-target tracking

Problem spec

- Assume two or more targets
- Query how many targets are present

Task

- Route query towards each of the targets, optimizing for the total number of hops
- Determine when to split a query (targets are too far apart?), and when to merge
- Consider both stationary and dynamic target cases

Target Localization for CCW Relations

Problem Spec

Many complex spatial relations among targets can be understood by sensing CCW relations

Task

The task is to experiment with sensor selection strategies for optimally sensing CCW relations.

Tracking the "Am_I_Surrounded" Relation

Problem Spec

We want to maintain a **cage** of three black vehicles containing the white vehicle

Task

When the white vehicle escapes its cage, we want to search for a new red vehicle completing the new cage.

Preview of the classes

- Week 1: Class organization; SN introduction and applications
- Week 2: Localization and tracking
- Week 3: Networking I; class project discussion
- Week 4: Networking II
- Week 5: Network initialization and services
- Week 6: Information management I
- Week 7: Information management II
- Week 8: SW/HW architecture; resource constraints
- Week 9: Localization and tracking II
- Week 10: Applications; Final project reports

