
A Simple Sensor Node Localization Algorithm
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Consider the following localization problem:
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x – Our actual position.
xi – Actual position of node i.
xi – Given position of node i, ~ N(xi, γ i

2I).
di – Measured distance to node i, ~ N(di, σi

2), di = ||x – xi||. 

Problem : Find ML estimate of our position, xML.



Negative log-likelihood function:
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Physics analogy: 0.5K(d – d)2 is the potential energy of 
a spring with constant K, length d, and natural length d.
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x, x1, …, xn is 
minimum 
energy 
configuration.

1/σ2
2 1/σ1

2

1/γ1
2

1/σ3
2x3

x

x3

x4

1/γ4
2



It is easy to see that in a minimum energy configuration, 
x, xi, and xi is colinear for each i.  Using this fact, we 
can readily show that xML is the ML estimate iff it 
minimizes
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where δi
2 = (σi

2 + γ i
2)/2.
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Interpretation: We treat the given positions x1, …, xn as 
the actual positions and transfer the error in x1, …, xn
to the di’s
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An approximate error analysis
Let L(x) be the (negative) log-likelihood when all our 
measurements are perfect, i.e. xi = xi and di = di.  Then 
L(x) achieves a minimum of 0 at x = x.  Thus the 
second-order approximation of L is

L(x) ≈ ½ (x – x)T∇ 2L(x)(x – x)

Thus the level set {x : L(x) = c} is approximately described 
by the ellipsoid {x : ½ (x – x)T∇ 2L(x)(x – x) = c}, and so we 
can say that on this ellipsoid

|| x – x ||2 ≤2 c / λ1(∇ 2L(x))



Tightness of an optimal solution
Let x* minimize the function f(x).  We define the tightness
of x* as λ1(∇ 2f(x)).

• The tightness measures the robustness of the 
solution to changes in f.  Suppose that we wish to 
minimize f + g.  Then the solution can deviate from 
x* by at most about ||∇ g(x*)|| / λ1.  
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Solving the ML problem 
Use Newton’s method with backtracking line search.

• Extremely fast convergence.
• Cheap to compute because dimensions are small (2). 

Choosing a good initial solution for Newton’s method:

• Choose pair of nodes that maximizes tightness of 
solution with respect to only those nodes.
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Yields two initial guesses.  Need to eliminate one.
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• Evaluate the value of L(x) at both proposed initial 
solutions and choose the one with least value, i.e. use 
ML detection.

Choose this as initial 
solution

x1

Is possible to choose wrong initial estimate (i.e. one that 
falls into the wrong local minimum).  Thus

• We require that difference in log-likelihood be 
large (say at least 10) before making decision.



A Sensor Node Localization Algorithm

• Each sensor i that has an estimate xi also has a error 
estimate γ i. 
• Each sensor has a distance estimate dij ~ N(dij, σij

2).
• A sensor i computes its ML estimate xML with respect 
to its neighbors, assuming that xi ~ N(xj, γ j

2I).  If xML is 
unique we then broadcast

xi = xML
γi

2 = L(xML) / λ1 + 1 / λ1

Mostly empirical 
formula, but … Inspired by 

5th slide
Inspired by 
Cramer-Rao

Preventing Catastrophic Errors: We refuse to broadcast 
if γ i exceeds a certain fixed threshold.



Increasing Node Participation
A node generally needs 3 neighbors with estimates to 
have a unique ML estimate.  But what if it only has 2 
neighbors?
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The presence of node xk is a certificate that xML2 is 
not a possible location for x.



Triangle Beacons
Each node still needs three nodes within fairly close 
proximity to get a unique estimate (this time needing only 
two of them needing to be neighbors).  Thus we deploy 
beacons in groups of three.

triangle beacon



Simulation Results
Avg. distance between nodes = 15 m.
Distance measurement std. dev. = 0.02 m.
4 groups of 3 beacons, randomly placed in each simulation.

200 nodes :

0.0300.02519910.4926

0.0660.0461959.6625

0.0510.0452008.8124

0.0200.0201829.0123

0.0510.0411767.8622

0.0520.0511787.4321

0.0280.0271206.620

0.0150.0064275.7819

0.0660.055935.318

Std. Dev.Avg. errorNum. 
Estimates

Num. 
neighbors

Sensing 
range



400 nodes:

0.1650.1713.8611.2126

0.0500.0624009.9425

0.0430.0482039.5224

0.0680.0773758.70523

0.0600.0562947.8922

0.1310.1262707.5521

0.0340.025666.95520

0.0530.0431296.2619

0.00880.0066705.718

Std. Dev.Avg. errorNum. 
Estimates

Num. 
neighbors

Sensing 
range


