
A Simple Sensor Node Localization Algorithm

1/δ2
2

1/δ1
2

1/δ4
2

1/δ3
2

Jeffrey Wu
CS428 Project
June 5, 2003

Consider the following localization problem:

x1

x2

x3

x1

x2

x3

x4

d1
d2

d3
x

d4

x4

x – Our actual position.
xi – Actual position of node i.
xi – Given position of node i, ~ N(xi, γ i

2I).
di – Measured distance to node i, ~ N(di, σi

2), di = ||x – xi||.

Problem : Find ML estimate of our position, xML.

Negative log-likelihood function:

∑ −−
+

−
=

i i

ii

i

ii
n

dxxxx
xxxL 2

2

2

2

1 2
)(

2
),,,(

σγ
…

Physics analogy: 0.5K(d – d)2 is the potential energy of
a spring with constant K, length d, and natural length d.

x1

x2

x4

1/σ4
2

1/γ2
2

1/γ3
2

x2
x1 ML estimate of

x, x1, …, xn is
minimum
energy
configuration.

1/σ2
2 1/σ1

2

1/γ1
2

1/σ3
2x3

x

x3

x4

1/γ4
2

It is easy to see that in a minimum energy configuration,
x, xi, and xi is colinear for each i. Using this fact, we
can readily show that xML is the ML estimate iff it
minimizes

∑ −−
==

i i

ii
nxx

dxx
xxxLxL

n
2

2

1,, 2
)(

),,,(min)(
1 δ

…
…

where δi
2 = (σi

2 + γ i
2)/2.

x3
1/δ1

21/δ2
2

1/δ3
2 1/δ4

2

Interpretation: We treat the given positions x1, …, xn as
the actual positions and transfer the error in x1, …, xn
to the di’s

x2

x1

x4

An approximate error analysis
Let L(x) be the (negative) log-likelihood when all our
measurements are perfect, i.e. xi = xi and di = di. Then
L(x) achieves a minimum of 0 at x = x. Thus the
second-order approximation of L is

L(x) ≈ ½ (x – x)T∇ 2L(x)(x – x)

Thus the level set {x : L(x) = c} is approximately described
by the ellipsoid {x : ½ (x – x)T∇ 2L(x)(x – x) = c}, and so we
can say that on this ellipsoid

|| x – x ||2 ≤2 c / λ1(∇ 2L(x))

Tightness of an optimal solution
Let x* minimize the function f(x). We define the tightness
of x* as λ1(∇ 2f(x)).

• The tightness measures the robustness of the
solution to changes in f. Suppose that we wish to
minimize f + g. Then the solution can deviate from
x* by at most about ||∇ g(x*)|| / λ1.

x2

x3
1/δ1

21/δ2
2

1/δ3
2 1/δ4

2

fixed
nodes

Physics analogy:
strength at xML.

x1

x4
fixed nodes

Solving the ML problem
Use Newton’s method with backtracking line search.

• Extremely fast convergence.
• Cheap to compute because dimensions are small (2).

Choosing a good initial solution for Newton’s method:

• Choose pair of nodes that maximizes tightness of
solution with respect to only those nodes.

high strengthx3

x4

high strength

Yields two initial guesses. Need to eliminate one.

x3

x2

x4

• Evaluate the value of L(x) at both proposed initial
solutions and choose the one with least value, i.e. use
ML detection.

Choose this as initial
solution

x1

Is possible to choose wrong initial estimate (i.e. one that
falls into the wrong local minimum). Thus

• We require that difference in log-likelihood be
large (say at least 10) before making decision.

A Sensor Node Localization Algorithm

• Each sensor i that has an estimate xi also has a error
estimate γ i.
• Each sensor has a distance estimate dij ~ N(dij, σij

2).
• A sensor i computes its ML estimate xML with respect
to its neighbors, assuming that xi ~ N(xj, γ j

2I). If xML is
unique we then broadcast

xi = xML
γi

2 = L(xML) / λ1 + 1 / λ1

Mostly empirical
formula, but … Inspired by

5th slide
Inspired by
Cramer-Rao

Preventing Catastrophic Errors: We refuse to broadcast
if γ i exceeds a certain fixed threshold.

Increasing Node Participation
A node generally needs 3 neighbors with estimates to
have a unique ML estimate. But what if it only has 2
neighbors?

xML1 xML2

r

xk

The presence of node xk is a certificate that xML2 is
not a possible location for x.

Triangle Beacons
Each node still needs three nodes within fairly close
proximity to get a unique estimate (this time needing only
two of them needing to be neighbors). Thus we deploy
beacons in groups of three.

triangle beacon

Simulation Results
Avg. distance between nodes = 15 m.
Distance measurement std. dev. = 0.02 m.
4 groups of 3 beacons, randomly placed in each simulation.

200 nodes :

0.0300.02519910.4926

0.0660.0461959.6625

0.0510.0452008.8124

0.0200.0201829.0123

0.0510.0411767.8622

0.0520.0511787.4321

0.0280.0271206.620

0.0150.0064275.7819

0.0660.055935.318

Std. Dev.Avg. errorNum.
Estimates

Num.
neighbors

Sensing
range

400 nodes:

0.1650.1713.8611.2126

0.0500.0624009.9425

0.0430.0482039.5224

0.0680.0773758.70523

0.0600.0562947.8922

0.1310.1262707.5521

0.0340.025666.95520

0.0530.0431296.2619

0.00880.0066705.718

Std. Dev.Avg. errorNum.
Estimates

Num.
neighbors

Sensing
range

