Distributed Fine-Grained Node Localization in Ad-Hoc Networks

A Scalable Location Service for Geographic Ad Hoc Routing

Presented by An Nguyen

Distributed Fine-Grained Node Localization in Ad-Hoc Networks

By Andreas Savvides and Mani Srivastava UCLA

Problem Setting

Simple idea: Atomic Multilateration

The position of a node can be determined when 3 beacons are within its range

Slightly more complicated: Iterative Multilateration

Once a node's position is known, it becomes a beacon

05/01/2003 CS428

Main Result: Collaborative Multilateration

- Works for more general settings
- 3 phases
 - Formation of collaborative subtrees
 - Computation of initial estimates
 - Position refinement

Phase #1: Formation of collaborative subtrees

- Goal:
 - Well-determined or over-determined system of equations
 - Facilitate distributed computation model
- Approach: add nodes one by one

What nodes to add?

Condition 1: An unknown node that is connected to 3 nodes that are beacons or have tentatively unique position

What nodes to add?

Condition 2: An unknown node uses at least one reference point that is not collinear with the rest of its reference points

What nodes to add?

Condition 3: Each node has at least one link that connects to a different node from the nodes used as references by the other nodes

Phase #2: Computation of initial estimates

- Find bounding box for each unknown node
- Set initial estimate of the unknown node as the center of its bounding box

05/01/2003 CS428

Phase #3: Position Refinement (Centralized)

- Minimize the sum of edge error squares
- Use Kalman Filters

$$f_{2,3} = R_{2,3} - \sqrt{(x_2 - ex_3)^2 + (y_2 - ey_3)^2}$$

$$f_{3,5} = R_{3,5} - \sqrt{(ex_3 - x_5)^2 + (ey_3 - y_5)^2}$$

$$f_{4,3} = R_{4,3} - \sqrt{(ex_4 - ex_3)^2 + (ey_4 - ey_3)^2}$$

$$f_{4,5} = R_{4,5} - \sqrt{(ex_4 - x_5)^2 + (ey_4 + y_5)^2}$$

$$f_{4,1} = R_{4,1} - \sqrt{(ex_4 - x_1)^2 + (ey_4 - y_1)^2}$$

$$F(x_3, y_3, x_4, y_4) = min \sum_{i,j} f_{i,j}^2$$

Phase #3: Position Refinement (Distributed)

- Repeatedly estimate node position using estimated positions of neighbors
- Yield approximately the same result as centralized approach

Experimental Results (1)

Different between distributed and centralized estimates

14

05/01/2003 CS428 Nguyen, An

Experimental Results (2)

Cost of estimating positions

05/01/2003 CS428 Nguyen, An 15

Experimental Results (3)

Localization accuracy

Experimental Results (4)

Communication cost

Convergence latency

End of 1st paper

A Scalable Location Service for Geographic Ad Hoc Routing

By Jinyang Li, John Jannotti, Douglas De Couto, David Karger, Robert Morris, MIT

Problem Setting

- Geographic forwarding
- Each node knows its position
- Location service: given an ID, find the position of a node with that ID

))))	
	90	38				39	
70			37	50		45	
91	62	5			51		11
	1				35	19	
26		41 (23)	63	41		72	
	4 14		63 B: 17	41	28	72 10	
4		23		41	83		20

05/01/2003 CS428

Constraints

- No node should be a bottle neck,
- Work should be spread evenly
- Failure of a node should not affect much the location service
- Queries for nearby nodes should be local
- Low storage and communication

GLS Idea (1)

Partition the world

05/01/2003 CS428

GLS Idea (2)

A node selects location servers "close" to itself Location servers of a node are well sampled

05/01/2003 CS428

GLS Query

) #									
L		70,72,76,81	1,5,6,10,12					19,35,37,45	
		82,84,87	14,37,62,70					50,51,82	
			90,91						
		/A: 90	38					39	
	1,5,16(37)62			16(17)	19,21	19,35,39,45		39,41,43	
	63,90,91			23,26,		51,82			
	_			32,35					
	70				37	50		45	
h	1,62,70,90	1,5,16,37,39	1,2,16,37,62				35,39,45,50		19,35,39,45
		41,43,45,50	70,90,91						50,51,55,61
		51,55,61,91	_						62,63,70,72
	91	62	5				51		^{76,81} 11
		62,91,98					19,20,21,23	1,2,5,6,10,12	
							26,28,31,32	14,16,17,82	
							51,82	84,87,90,91	
		1					35	⁹⁸ 19	
	14,17,19,20		2,17,23,63	2,17,2		28,31,32,35		10,20,21,28	
	21,23,26,87			31,32,	43,55	37,39		41,43,45,50	
				61,62				51,55,61,62	
	26		23		63	41		63,70 72	
	14,23,31,32	2,12,26,87	1,17,23,63,81				6,10,20,21	6,72,76,84	
h	43,55,61,63	98	87,98	23,63	L		23,26,41,72		
	81,82,84				*		76,84		
	87	14	2	B:	17		28	10	
	31,81,98	31,32,81,87	12,43,45,50	12,43,	55	1,2,5,21,76	6,10,20,76		6,10,12,14
		90,91	51,61			84,87,90,91			16(17)19,84
						98	^		
	32	98	55		61	6			20
	31,32,43,55	2,12,14,17	12,14,17,23	2,5,6,1			6(21),28,41	20,21,28,41	
	61,63,70,72	23,26,28,32	26,31,32,35	55,61,63,81			72	72,76,81,82	
	76,98	81,98	37,39,41,55 61 4.2	87,98					
	81	31	61 43		12	<u> </u>	A: 76	84	

05/01/2003 CS428

GLS is nice...

- No node is a bottle neck,
- Work is spread evenly
- Failure of a node does not affect much the location service
- Queries for nearby nodes is local
- Low storage and communication

Dealing with motion

- Update its location server from time to time
 - Higher level location server are updated less frequently

Experimental Results (1)

Query success rate

Number of packets passing through a node

Experimental Results (2)

Query path vs communication path

Experimental Results (3)

Storage per node

05/01/2003 CS428

Experimental Results (4)

Query success rate vs node speed

05/01/2003 CS428

Experimental Results (5)

Query success rate vs node failure rate

05/01/2003 CS428

Experimental Results (6)

Delivery rate

Packets per node

GLS + Data traffic

05/01/2003 CS428

Summary

- Localization
 - Distributed
 - Accurate
- Location Service for Geographic Forwarding
 - Local
 - Balanced
 - No bottle neck nodes
 - Handle node failures gracefully
 - Low storage/bandwidth requirement