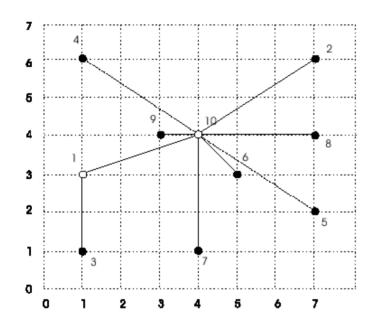
Sensor Networks: Energy & Resource Optimization

Wendy Ju
CS428 Sensor Networks
May 22th, 2003

Energy and Resource Optimization


How do we optimize performance?

	Cagalj '02	Brown '01	Doherty '01
Optimization	Routing w/ minimal Energy	Routing w/ maximum Flow Life	Design w/ maximum Functionality
Communicatio n	Source-initiated Broadcast	Source to Destination	Source to Central Receiver Heterogeneous Ad-hoc
Applications/ Scenarios	[Event alert] Update state Maintain route	[point to point communication]	Environment Monitoring Seismic Monitoring Tracking

Energy and Resource Optimization

Mario Calalj, Jean-Pierre Hubaux,

Christian Enz 2002

Minimum-Energy
Broadcast in AllWireless Networks:
NP-Completeness
and Distribution
Issues

Minimum energy model parameters

- Short-range ad hoc wireless
- Battery-operated
- Stationary
- Large bandwidth resources
- No contention issues
- Omnidirectional RF signal

Minimum energy terms

- Connected: node j falls in the transmission range of node i
- Link cost c_{ij} : minimum power needed to sustain link (i,j)
- *Variable node power* p_i : power at which node i has transmitted.
- Neighbors V_i : node j falls in the maximum transmission range of node i

Minimum energy complexity

- Minimum energy broadcast tree is hard to solve
 - # possible broadcast trees is exponential in the number of nodes.
 - Nodes are allowed to transmit at |P| different power levels
- *Minimum Broadcast Cover* (is there a broadcast tree rooted at r with total cost B or less s.t. all nodes in V are included in the tree?) is NP-complete: provable by the Set Cover problem
- Geometric MBC is NP-complete: provable by planar 3-SAT

Minimum energy heuristic routing

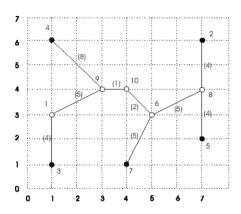


Figure 6: The network example and its MST $(e_{MST} = 23)$

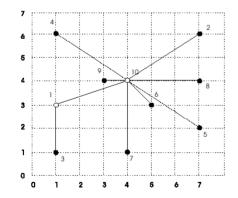


Figure 7: The broadcast-tree obtained by EWMA heuristic ($e_{EWMA} = 17$)

- EWMA: Embedded wireless multicast advantage
 - Start with minimum spanning tree (MST)
 - Calculate total energy
 - Increase source energy to remove other transmitters
 - Calculate change in max energy drop
 - Iterate
- Runtime bounded $O(d^4)m^2$

Minimum energy heuristic routing

- Distributed EWMA: Embedded wireless multicast advantage
 - Distributed algorithm to form EWMA
 - 2 phases
 - Construct Minimum-weight spanning tree
 O(|V|log|V|) so each node has information about its two-hop neighbors
 - Final broadcast tree is built up by broadcasting, synchronizing node models. Duration is |F| Tmax long

Minimum energy performance evaluation

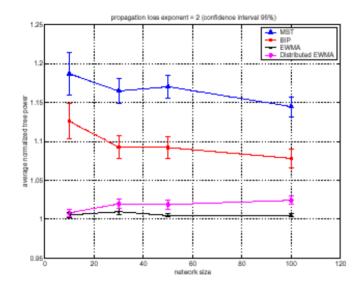
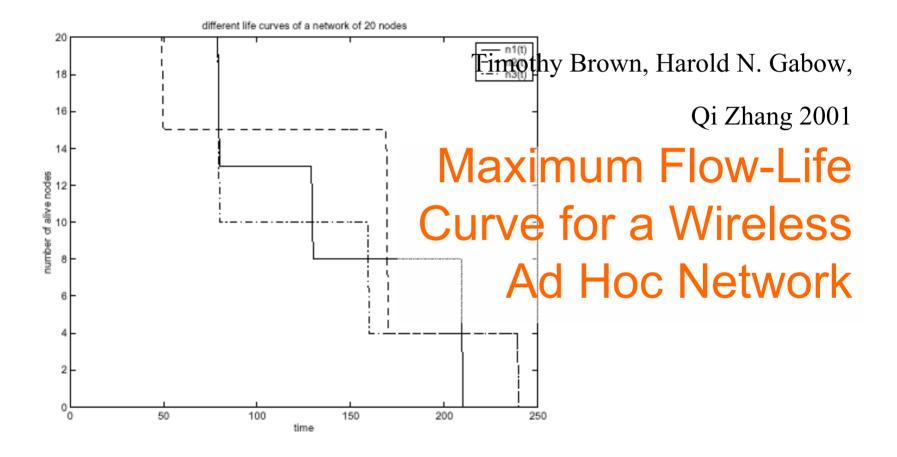



Figure 11: Distributed algorithm - normalized tree power for 100 network instances (confidence interval 95%) and propagation loss exponent $\alpha=2$

- Performance measured by normalized tree power as a function of network size
- Performs significantly better on average than BIP and MST
- Difference in performance decreases as the propagation loss exponent increases

Minimum energy analysis

- Authors address need for additional power consumption reduction mechanisms, minimum-energy multicast and mobility
- Perfectly circular broadcast path is not necessarily realistic
- This solution minimizes overall energy of system but not that of individual nodes.
- In fact, we'd expect the critical relay nodes to exhaust their power first, causing network failure.

Energy and Resource Optimization

Maximum flow-life definition

- Flow-life is the maximum period of time for which the network is able to send signals from the source to the destination
- Flow-life is distinct from network life, which is the time to the first node failure; Flow-life assumes that communication continues in a degraded rate.

Maximum flow-life model parameters

- Short-range ad hoc wireless
- Battery-operated
- Stationary
- Large bandwidth resources
- No contention issues
- Point to point

Maximum flow-life terms

- Hop path p_k : ordered set of nodes from source s to destination d.
- I_{sd} : set of all indices for paths from s to d.

$$I_{sd} = \{k | s(k) = s \text{ and } d(k) = d\}$$

- $Flow f_{sd}$: long term rate of data transmission from s to d.
- Routing scheme r_i : set of flows allocated to all pathes between s and d. $r = \{x_k(r)\}$
- Energy rate a_{ik} : rate energy is drawn from node

Maximum flow-life node-life curve

- How many nodes will be alive at time t given routing scheme r? n(t,r)
- Maximizing the node-life gives optimum routing scheme.
- Key properties:
 - In the max-node life curve, the exhausted node set for each drop point is unique.
 - There exists a single routing r that achieves the maximum node life curve.
 - In the maximum node life cure, at least one flow is exhausted at each drop point.

Maximum flow-life flow-life curve

 Theorem: A maximum-node life curve routing is also a maximum flow-life curve routing.

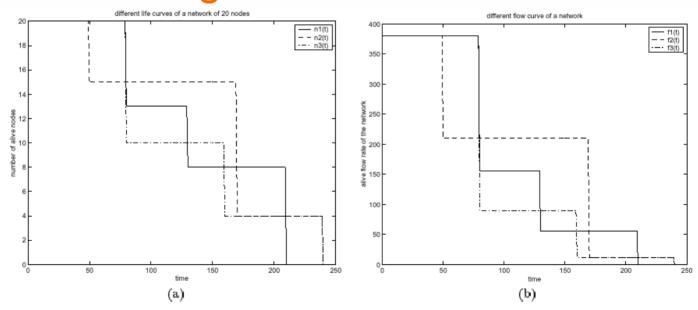


Figure 1: Three node-life curves (a) and flow-life curves (b) in a 20 node network.

Maximum flow-life computation algorithm

- Calculates the timing and nodes at each drop point within $O(N^2(M+N)^4 \log N)$
- Variables:
 - $-t_{sd}$: time messages cease being sent from s to d
 - ϕ_k : the total flow that the routing sends through path p_k .
- Maximum routing satisfies these constraints

(1)
$$\sum_{k \in I_{sd}} \phi_k = f_{sd}t_{sd}$$
 for all s, d with $f_{sd} \in F$

(2)
$$\sum_{k \in I_F} a_{ik} \phi_k \le E_i$$
 for all nodes v_i

Maximum flow-life performance evaluation

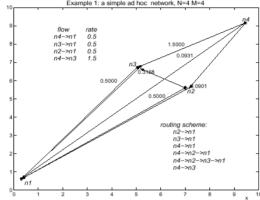


Figure 2: Node placement and flows in a four node network where the labels are the traffic carried on each path under the maximum flow-life curve routing.

i	$ au_{i}$	S_i^n	S_i^f	$\sum f_{kl}$
0	0	$\{v_1, v_2, v_3, v_4\}$	$\{f_{41}, f_{31}, f_{21}, f_{43}\}$	3.0
1	3.410	$\{v_1\}$	Ø	0

Table 1: Drop points and surviving nodes with maximum flow-life curve routing (Ex. 1).

i	t_i	S_i^n	S_i^f	$\sum f_{kl}$
0	0	$\{v_1, v_2, v_3, v_4\}$	$\{f_{41}, f_{31}, f_{21}, f_{43}\}$	3.0
1	1.857	$\{v_1, v_2, v_4\}$	$\{f_{41}, f_{21}\}$	1.0
2	3.878	$\{v_1, v_4\}$	$\{f_{41}\}$	0.5
3	4.562	$\{v_1\}$	Ø	0

Table 2: Drop points and surviving nodes with minimum total power routing (Ex. 1).

Two simulated node networks

4 nodes, 4 flows:
 maximum flow-life
 curve keeps network
 connected 80% longer
 than minimum total
 power routing

Maximum flow-life performance evaluation

• 12 nodes with 20 flows: maximum flow-life curve routing maintains all flows twice as long as minimum total power routing.

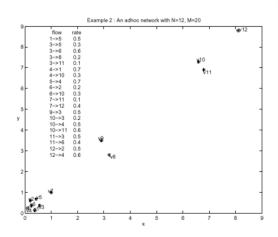


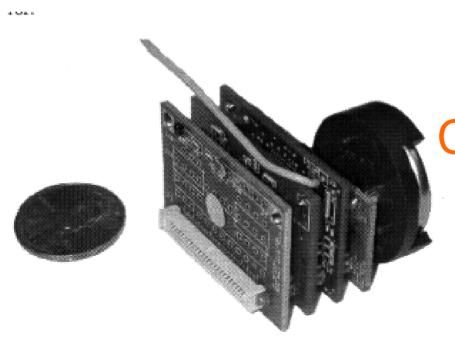
Figure 3: Node placement and flows in a 12 node network.

i	t_i	S_i^n	S_i^f	$\sum f_{kl}$
0	0	$\{v_1,\ldots,v_{12}\}$	$F = \{f_{ij}\}$	8.2
1	11.01	$\{v_1,\ldots,v_9\}$	$\{f_{15}, f_{35}, f_{36}, f_{38}, f_{41}, f_{54}, f_{62}, f_{93}\}$	3.7
2	260.4	Ø	Ø	0.0

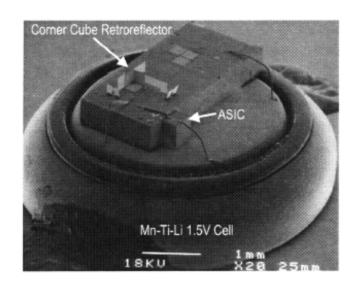
Table 3: Drop points and surviving flows with the maximum flow-life curve routing (Ex. 2).

_				
i	t_i	S^n_i	S_i^f	$\sum f_{kl}$
0	0	$\{v_1, \ldots, v_{12}\}$	$F = \{f_{ij}\}$	8.2
			$\{f_{15}, f_{35}, f_{36}, f_{38}, f_{41}, f_{4,10}, f_{54}, f_{62}, \}$	
1	5.149	$\{v_1,\ldots,v_{10},v_{12}\}$	$f_{6,10}, f_{7,12}, f_{93}, f_{10,3}, f_{10,4}, f_{12,2}, f_{12,4}$	6.5
			$\{f_{15}, f_{35}, f_{36}, f_{38}, f_{41}, f_{54}, f_{62}, \}$	
2	12.07	$\{v_1, \ldots, v_8, v_{12}\}$	$f_{7,12},f_{12,2},f_{12,4}\}$	4.7
1	14.51	$\{v_1,\ldots,v_8\}$	$\{f_{15}, f_{35}, f_{36}, f_{38}, f_{41}, f_{54}, f_{62}\}$	3.2
3	949.2	$\{v_1,\ldots,v_4,v_6,v_8\}$	$\{f_{36},f_{38},f_{41},f_{62}\}$	1.7
4	1211	$\{v_1, v_2, v_4, v_6, v_8\}$	$\{f_{41}, f_{62}\}$	1.7
5	13,200	$\{v_1, v_2, v_6, v_8\}$	$\{f_{62}\}$	0.2
6	46,130	$\{v_1, v_2, v_8\}$	Ø	0.0

Table 4: Drop points and surviving flows with the minimum total power routing (Ex. 2).


Maximum flow-life analysis

- Even without direct comparison, can see the appeal of this method over that of minimum energy!
- Authors note the need for making system distributed, choosing routes, mobility, congestion.
- Also, how might these simulated analyses compare to real-world implementation?


L Doherty, BA Warneke, BE Boser,

KSJ Pister 2001

Energy and Performance Considerations for Smart Dust

Smart dust characteristics

- Short-range peer to peer
- RF communication/optical
- Battery-operated/Solarpowered
- Stationary
- Cubic mm in size
- Situated in the physical world

Smart dust parameters

- Sensor performance, power and cost.
- How much energy is available to the sensor nodes?
- What functionality can a sensor node achieve within this energy budget?
- Integrate power ramifications of power source, computation, sensing and communication for sensor networks.

Smart dust energy sources

- Lithium energy cell: 2J/mm³
- Solar:
 - 0.3 mW/mm2 full sunlight
 - 0.3 mW/mm2 bright indoor illumination
- Parasitic vibration
 - $-\sim 10 \text{mW/g}$ of converter mass (much less useful)

Smart dust energy of circuitry

 ${\bf Table~3} \\ {\bf Energy~Consumption~of~Various~Processor~Instructions}$

Instruction	Basic Processor (Calculated)	Basic Processor (Simulated)	ARM8 [3]	Description	
MOVI	0.047	0.38	4.3	Move immediate value into a register	
MOV	0.047	0.59	5.1	Move from register to register	
ADD	0.068	0.79	4.6	Add two registers and store in a third	
LW	0.053	0.44	4.6	Load from memory location specified by one register into a second register	
sw	0.047	0.46	4.6	Store from a register to the memory location specified by a second register	
MUL			31.9	Multiply two registers and store in a third	
B - fail	0.041	0.51	4.8	Conditional branch not taken	
B - pass	0.047	0.60	4.8	Conditional branch taken	
JMP	0.047	0.43	4.8	Unconditional jump	

Note. Energy consumption is based on (a)calculations from the component consumption values,

- (b) the simulated consumption of a full processor using a standard cell library, and
- (c) simulations of an ARM8 core. Energy consumption of the SRAM is not included.

Values are given in pJ per datapath bit.

- Could be beneficial to reduce #, types of operations to lower energy use
- Selection of devices, operating voltage, register widths, bus lengths, & RAM may affect power profile.
- 1 pJ/instruction

Smart dust sensor interfaces

- Not size dependant.
- Increased operating speed, resolution dramatically affect power dissipation.
- For thermal noise limited circuit:
 - $E = \frac{NV_{DD}}{(\Delta V)^2} \frac{1}{F_{Amp}}$ » N: accuracy in bits, Vdd: supply voltage, DV: resolution of the system, F:design multiplier
- Typical sensors (10 bit):
 - Temperature 4nJ/sample
 - Accelerometer 2uJ/sample for milliG resolution
- A/D conversion 10-bit conversion ~4nJ

Smart dust low power RF communication

- Limited by thermal noise, min. signal power must be: $P_{r,min} = kTB \cdot N_f \cdot SNR_{min}$
- In typical operation, min. receiver power is:

$$P_r = \frac{P_t G_{ant}}{16\pi^2 (d/\lambda)^n}$$

shere n=2 in freespace, and n=2-7 at ground level with an average of 4

• Fundamental ground-to-ground communication limit at 1kbps over 100m is 1µJ/bit, 100nJ/bit short range

Energy and Resource Optimization

Smart dust optical communication

- Over 0-50m range requires ~20pJ/bit (vs 100nJ/bit using RF on gound)
- Over 1-10kM 10nJ/bit required(vs 50uJ/bin)
- However, requires line of sight and orienting of optical beam

Smart dust scenarios

	Building Monitoring	Seismic Profiling	Tracking Scenario
Communicatio n	Source to central receiver (single hop) Radio	Source to central receiver (single hop) Radio	Ad hoc wireless nodes
Energy requirement/ Life	300mJ/day Battery:1week/mm³ Solar: indefinite w/900mm² array	10mJ/day Battery: 2 days/mm³ with wakeup	10mA from 3V lithium. 2 days/battery Solar: 0.15W/day
Other issues	Sampling period maps nearly linearly to battery life	Low duty cycle necessitates self-awakening or beacon	Suggest heterogeneous modes of operation

Energy and Resource Optimization

Smart dust analysis

- Sensor networks are possible (but have a definite lower bound on power consumption!)
- High density is necessary to overcome distance attenuation
- Computation significantly less expensive than communication or sensing
- (100 million instructions \Leftrightarrow 100 bits \Leftrightarrow 50 samples)
- Distributed sensing, but most scenarios avoid doing real networking (no listening?)