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How do we optimize performance?
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Minimum energy model parameters

• Short-range ad hoc wireless
• Battery-operated
• Stationary 
• Large bandwidth resources
• No contention issues
• Omnidirectional RF signal
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Minimum energy terms

• Connected: node j falls in the transmission 
range of node i

• Link cost cij: minimum power needed to sustain 
link (i,j)

• Variable node power pi: power at which 
node i has transmitted.

• Neighbors Vi: node j falls in the maximum 
transmission range of node i



Energy and Resource Optimization

Minimum energy complexity
• Minimum energy broadcast tree is hard to solve

– # possible broadcast trees is exponential in the number 
of nodes.

– Nodes are allowed to transmit at |P| different power 
levels

• Minimum Broadcast Cover (is there a broadcast 
tree rooted at r with total cost B or less s.t. all 
nodes in V are included in the tree?) is NP-
complete: provable by the Set Cover problem

• Geometric MBC is NP-complete: provable by 
planar 3-SAT
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Minimum energy heuristic routing
• EWMA: Embedded 

wireless multicast 
advantage
– Start with minimum 

spanning tree (MST)
– Calculate total energy
– Increase source energy to 

remove other transmitters
– Calculate change in max 

energy drop
– Iterate

• Runtime bounded O(d4)m2
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Minimum energy heuristic routing
• Distributed EWMA: Embedded wireless 

multicast advantage
– Distributed algorithm to form EWMA
– 2 phases

• Construct Minimum-weight spanning tree 
O(|V|log|V|) so each node has information about its 
two-hop neighbors

• Final broadcast tree is built up by broadcasting, 
synchronizing node models. Duration is |F| Tmax
long
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Minimum energy performance evaluation
• Performance measured 

by normalized tree 
power as a function of 
network size

• Performs significantly 
better on average than 
BIP and MST

• Difference in 
performance decreases 
as the propagation loss 
exponent increases
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Minimum energy analysis
• Authors address need for additional power 

consumption reduction mechanisms, minimum-
energy multicast and mobility

• Perfectly circular broadcast path is not 
necessarily realistic

• This solution minimizes overall energy of 
system but not that of individual nodes.  

In fact, we’d expect the critical relay nodes to 
exhaust their power first, causing network 
failure.
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Maximum flow-life definition

• Flow-life is the maximum period of time for 
which the network is able to send signals 
from the source to the destination

• Flow-life is distinct from network life, 
which is the time to the first node failure; 
Flow-life assumes that communication 
continues in a degraded rate.
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Maximum flow-life model parameters

• Short-range ad hoc wireless
• Battery-operated
• Stationary 
• Large bandwidth resources
• No contention issues
• Point to point
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Maximum flow-life terms
• Hop path pk: ordered set of nodes from source s

to destination d.
• Isd: set of all indices for paths from s to d. 

Isd={k|s(k)=s and d(k) = d}

• Flow fsd: long term rate of data transmission from 
s to d.

• Routing scheme ri: set of flows allocated to all 
pathes between s and d. r = {xk(r)}

• Energy rate aik: rate energy is drawn from node 
vi
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Maximum flow-life node-life curve
• How many nodes will be alive at time t given 

routing scheme r? n(t,r)
• Maximizing the node-life gives optimum routing 

scheme.
• Key properties:

– In the max-node life curve, the exhausted node set for 
each drop point is unique.

– There exists a single routing r that achieves the 
maximum node life curve.

– In the maximum node life cure, at least one flow is 
exhausted at each drop point.
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Maximum flow-life flow-life curve

• Theorem: A maximum-node life curve 
routing is also a maximum flow-life 
curve routing.
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Maximum flow-life computation algorithm

• Calculates the timing and nodes at each 
drop point within O(N2(M+N)4log N)

• Variables:
– tsd: time messages cease being sent from s to d
– φk:the total flow that the routing sends through 

path pk.
• Maximum routing satisfies these constraints
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Two simulated node 
networks 

• 4 nodes, 4 flows: 
maximum flow-life 
curve keeps network 
connected 80% longer 
than minimum total 
power routing

Maximum flow-life performance evaluation
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Maximum flow-life performance evaluation

• 12 nodes with 20 flows: maximum flow-life 
curve routing maintains all flows twice as 
long as minimum total power routing.
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Maximum flow-life analysis

• Even without direct comparison, can see the 
appeal of this method over that of minimum 
energy!

• Authors note the need for making system 
distributed, choosing routes, mobility, 
congestion.

• Also, how might these simulated analyses 
compare to real-world implementation?
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Smart dust characteristics

• Short-range peer to peer
• RF communication/optical
• Battery-operated/Solar-

powered
• Stationary 
• Cubic mm in size
• Situated in the physical 

world
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Smart dust parameters

• Sensor performance, power and cost.
• How much energy is available to the sensor 

nodes?
• What functionality can a sensor node achieve 

within this energy budget?
• Integrate power ramifications of power source, 

computation, sensing and communication for 
sensor networks.
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Smart dust energy sources

• Lithium energy cell: 2J/mm3

• Solar: 
– 0.3 mW/mm2 full sunlight
– 0.3 mW/mm2 bright indoor illumination

• Parasitic vibration
– ~10mW/g of converter mass (much less useful)
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Smart dust energy of circuitry

• Could be beneficial to 
reduce #, types of 
operations to lower 
energy use

• Selection of devices, 
operating voltage, register 
widths,bus lengths, & 
RAM may affect power 
profile.

• 1 pJ/instruction
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Smart dust sensor interfaces

• Not size dependant.
• Increased operating speed, resolution dramatically 

affect power dissipation.
• For thermal noise limited circuit:

» N: accuracy in bits, Vdd: supply voltage, DV: 
resolution of the system, F:design multiplier

• Typical sensors (10 bit):
– Temperature 4nJ/sample
– Accelerometer 2uJ/sample for milliG resolution

• A/D conversion 10-bit conversion ~4nJ
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Smart dust low power RF communication

• Limited by thermal noise, min. signal power must 
be:

• In typical operation, min. receiver power is:

shere n=2 in freespace, and n=2-7 at ground level with an 
average of 4

• Fundamental ground-to-ground communication 
limit at 1kbps over 100m is 1µJ/bit, 100nJ/bit short 
range
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Smart dust optical communication

• Over 0-50m range requires ~20pJ/bit (vs
100nJ/bit using RF on gound) 

• Over 1-10kM 10nJ/bit required(vs 50uJ/bin)
• However, requires line of sight and orienting 

of optical beam
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Smart dust scenarios

Suggest 
heterogeneous 
modes of 
operation

Low duty cycle 
necessitates self-
awakening or 
beacon

Sampling period 
maps nearly linearly 
to battery life

Other issues
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days/battery
Solar: 0.15W/day

10mJ/day
Battery: 2 days/mm3 

with wakeup

300mJ/day
Battery:1week/mm3

Solar: indefinite 
w/900mm2 array
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Smart dust analysis

• Sensor networks are possible (but have a 
definite lower bound on power consumption!)

• High density is necessary to overcome distance 
attenuation

• Computation significantly less expensive than 
communication or sensing 

(100 million instructions 100 bits 50 
samples)

• Distributed sensing, but most scenarios avoid 
doing real networking (no listening?)
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