

Sensing, Tracking, and Reasoning with Relations

Leonidas Guibas. "Sensing, Tracking and Reasoning with Relations", IEEE Signal Processing Magazine, Volume: 19 Issue: 2, March 2002.

Traditional Approach

- Traditional approach:
 - Collect as much information as possible
 - Centrally aggregate and analyze this information
- Problems:
 - Much of the information is useless
 - Excessive use of battery power
 - Wastes network bandwidth

A Relational Approach

- Conserve resources by exploiting query prior
- Sense relations directly
 - Useful for establishing spatial relations
 - Less expensive than fully localizing targets
- Aggregate and save partial information
 - Answer global queries by combining information
 - Does not require additional sensing
 - Reduce storage load on sensors

- Introduction
- Motivation by Example
- Reasoning with Relations
- A Non-Local Relation
- Kinetic Data Structures (skipped)
- Probabilistic Reasoning
- Conclusion

- Introduction
- Motivation by Example
- Reasoning with Relations
- A Non-Local Relation
- Kinetic Data Structures (skipped)
- Probabilistic Reasoning
- Conclusion

Leader in the Corridor

- Cameras observe AHEAD_OF (>) relations
 - Camera 1: C > D, D > E
 - Camera 2: A > B, B > C
- Cameras can directly observe AHEAD_OF
- Easy to hand off agents between cameras

Containment via CCW

- A polygon with vertices V₁ ... V_N will contain point P iff there exists a subset of ordered vertices S₁ ... S_M such that CCW(P,S_i,S_{i+1}) holds for i=1 ... N-1
- Assertions required:
 - CCW(d,b,c)
 - CCW(d,c,a)
 - CCW(d,a,b)

Am I Surrounded?

Using CCW relations to answer query:

Target Counting

- Count the number of targets in a half-space
- Strategy:
 - 1. Divide space into grid
 - 2. Local sensors count targets in each cell
 - 3. Send counts to both right and left
- Sensor distribution need not be uniform
- Applicable to other shapes

Cluster Maintenance

- Maintain vehicles in clusters
- Vehicles aggregate into clusters, elect leader
- Vehicles need to know identity of other vehicles within a set of ranges
- Actual locations not required

- Introduction
- Motivation by Example
- Reasoning with Relations
- A Non-Local Relation
- Kinetic Data Structures (skipped)
- Probabilistic Reasoning
- Conclusion

Reasoning with Relations

- Sensor networks pose new challenges:
 - Relevant information not known, can be sensed
 - Relations between variables easier to determine than values
 - Different costs for different pieces of information
 - Some information unattainable but other information may substitute
- Information both pushed and pulled

Design Criteria

- Algorithms must account for importance of:
 - Objects
 - Parameters of objects
 - Relations between objects
- Answer general questions like:
 - Can relations between objects be sensed directly?
 - How coordinated must sensor states be?
 - What kind of information do sensors transmit

More Design Criteria

- Also answer problem-specific questions like:
 - Which sensor to use to gather specific information
 - How many sensing / communication tasks are needed?
- Decisions must make decisions on-line
- Useful techniques:
 - competitive analysis
 - value of information
 - other measures

- Introduction
- Motivation by Example
- Reasoning with Relations
- A Non-Local Relation
- Kinetic Data Structures (skipped)
- Probabilistic Reasoning
- Conclusion

Sensing Non-Local Relations

- Local relations require one sensor to assert
- Many queries require non-local relations
- Involves probabilistic relations
- Example: CCW relations

Asserting CCW Relations (1)

Asserting CCW Relations (2)

Asserting CCW Relations (3)

Asserting CCW Relations (4)

Uncertainty Metrics

 Often want to minimize relation entropy, not variable entropy:

S1 minimizes variable entropy

S2 minimizes relational entropy

- Introduction
- Motivation by Example
- Reasoning with Relations
- A Non-Local Relation
- Kinetic Data Structures (skipped)
- Probabilistic Reasoning
- Conclusion

- Introduction
- Motivation by Example
- Reasoning with Relations
- A Non-Local Relation
- Kinetic Data Structures (skipped)
- Probabilistic Reasoning
- Conclusion

Probabilistic Reasoning

- Representation and inference tools for dealing with uncertain situations
- Highly useful for relational reasoning
- Some tools:
 - Particle filters
 - Bayesian Networks
 - Dynamic Bayesian Networks
 - Probabilistic Relational Models

Kalman Filters

- Uses a multivariate of Gaussians to represent uncertainty over state of variables
- Advantages:
 - Simple to implement
- Disadvantages:
 - Cannot maintain multiple hypotheses
 - Filtering function must be linear
 - Noise must be modeled as Gaussian

Particle Filters

- Uses set of particles to represent belief
- Each particle has weight and belief
- Particles sampled according to weight, filtered
- Advantages:
 - Can represent more complicated belief functions
 - Granularity of belief can be controlled by varying the number of particles
 - Arbitrary filters can be used
 - Noise need not be Gaussian

Bayesian Networks

 Generative model specifying probabilistic relations among assertions about the world:

```
Cloudy
Rain
Sprinklers
Grass Wet
```

```
P(Rain \mid Cloudy) = 0.8
P(Rain \mid \neg Cloudy) = 0.1
```

P(Sprinklers) = 0.4

P(Cloudy) = 0.2

```
P(Grass Wet | Rain, Sprinklers) = 0.95
P(Grass Wet | Rain, ¬Sprinklers) = 0.9
P(Grass Wet | ¬Rain, Sprinklers) = 0.9
P(Grass Wet | ¬Rain, ¬Sprinklers) = 0.1
```


Dynamic Bayesian Networks

Probabilistic Relational Model

Probability and Kinetic Data Structures

- Simple case:
 - k certificates are true with probability 1 -
 - Assertion true with probability 1 k *
- Better bounds often possible
- Inference on Bayesian network allows more accurate posterior probabilities

- Introduction
- Motivation by Example
- Reasoning with Relations
- A Non-Local Relation
- Kinetic Data Structures (skipped)
- Probabilistic Reasoning
- Conclusion

Conclusion

- Reasoning about relations more efficient
- Useful in wide variety of scenarios
- Algorithms using sensors and relations between objects must be designed differently
- Non-local relations are also important
- Useful tools for reasoning about relations:
 - Kinetic Data Structures
 - Probabilistic Methods