Time Synchronization in Sensor Networks

• Time Synchronization in Ad Hoc Networks – Kay Roemer

•Fine Grained Network Time Synchronization using Reference Broadcasts – J. Elson, L. Girod, D. Estrin

Need For Time Synchronization

- detect direction of movement of a phenomenon
- form a TDMA radio schedule
- configure a beamforming array
- estimate velocity of a moving phenomenon
- suppress redundant transmissions by recognizing duplicate detection of same event

Traditional Synchronization Methods

- Exchange messages between the nodes
- Estimate one way latency

Difficulty - Topology Change

Difficulty – Non Determinism

- Time Synchronization in Ad Hoc Networks Kay Roemer
 - attacks problem of topology change
 - determines upper and lower bounds for real time
- •Fine Grained Network Time Synchronization using Reference Broadcasts J. Elson, L. Girod, D. Estrin
 - -attacks problem of non determinism in latency
 - uses physical broadcast to synchronize receivers

K. Roemer – Time Transformation

- Time stamps generated by unsynchronized clocks
- Transform local time of sender to local time of receiver
- Determines lower and upper bounds for such transformations
- Temporal ordering
 - $-t(E_1) < t(E_2)$
 - $-t(E_1) > t(E_2)$
 - Unsure

Clock Drift

$$1 \text{ à } \text{ \'{u}} \text{ \^{o}} \quad \frac{dC}{dt} \quad \hat{o} \quad 1 + \text{ \'{u}}$$

- ú is of the order of 10⁻⁶
- different computer clocks have different drifts
- Approximate as differences to get

-
$$(1-\rho)\Delta t$$
: ΔC : $(1+\rho)\Delta t$

$$- \frac{\Delta C}{1+\rho} \le \Delta t \le \frac{\Delta C}{1-\rho}$$

Time Transformation

Message Delay Estimation

Message Flow

Accuracy

Interval Arithmetic

Summary

- Handles network partitioning
- Does not need special topologies
- Low message overhead
- Improvements based on probability distribution of uncertainty possible

J. Elson et al. – Reference Broadcasts

- Nodes send reference beacons to neighbors using physical-layer broadcasts
- Receivers use arrival time as a point of reference to compare clocks
- Multi-hop synchronization can be achieved

Limitation:

Need physical broadcast channel

Traditional Synchronization

RB Synchronization

Inter-receiver Phase Offset

s.d. = 11.1 microsec

Bit time is 52 micro-seconds

Estimation of Phase Offset - Algorithm

- A transmitter transmits m reference packets
- Each of the n receivers records the time that the reference was observed according to the local clock
- Receivers exchange observation
- Each pair of receivers compute the phase offset by averaging the m readings

Group Dispersion: max. of phase error between all receiver pairs

Estimation of Clock Skew

Oscillator:

- Accuracy
- Stability
- Assume frequency is stable over small time window
- Use least-squares linear regression
 - Slope gives frequency offset
 - Intercept gives phase offset

Estimation of Clock Skew - Experiment

Basic RBS Summary

- Removes largest sources of nondeterministic latency
- Multiple broadcasts decrease error, post-facto synchronization possible
- Outliers can be handled
- Local timescales can be constructed (absolute synchronization is a natural extension).

Summary

- RBS synchronizes a set of receivers with one another
- No explicit timestamp needed
- Largest sources of non determinism in latency removed
- Residual error is Gaussian (experimental observation)
- Post-facto synchronization possible