Time Synchronization in Sensor Networks

- Time Synchronization in Ad Hoc Networks Kay Roemer
-Fine Grained Network Time Synchronization using Reference Broadcasts - J. Elson, L. Girod, D. Estrin

Need For Time Synchronization

- detect direction of movement of a phenomenon
- form a TDMA radio schedule
- configure a beamforming array
- estimate velocity of a moving phenomenon
- suppress redundant transmissions by recognizing duplicate detection of same event

Traditional Synchronization Methods

- Exchange messages between the nodes
- Estimate one way latency

Difficulty - Topology Change

Difficulty - Non Determinism

Propagation Time
$+$
Receive Time
time for network interface
to receive message from Channel

- Time Synchronization in Ad Hoc Networks Kay Roemer
- attacks problem of topology change
- determines upper and lower bounds for real time
-Fine Grained Network Time Synchronization using Reference Broadcasts - J. Elson, L. Girod, D. Estrin
-attacks problem of non determinism in latency
- uses physical broadcast to synchronize receivers

K. Roemer - Time Transformation

- Time stamps generated by unsynchronized clocks
- Transform local time of sender to local time of receiver
- Determines lower and upper bounds for such transformations
- Temporal ordering
$-t\left(E_{1}\right)<t\left(E_{2}\right)$
$-t\left(E_{1}\right)>t\left(E_{2}\right)$
- Unsure

Clock Drift

$$
1 \text { à ú ô } \frac{d C}{d t} \text { ô } 1+\text { ú }
$$

- ú is of the order of 10^{-6}
- different computer clocks have different drifts
- Approximate as differences to get
- $(1-\rho) \Delta t: \Delta C:(1+\rho) \Delta t$
$-\frac{\Delta C}{1+\rho} \leq \Delta t \leq \frac{\Delta C}{1-\rho}$

Time Transformation

Node 1 clock

Real Time

Node 2 clock

Message Delay Estimation

Message Flow

Accuracy

Age

number of hops

Interval Arithmetic

Summary

- Handles network partitioning
- Does not need special topologies
- Low message overhead
- Improvements based on probability distribution of uncertainty possible

J. Elson et al. - Reference Broadcasts

- Nodes send reference beacons to neighbors using physical-layer broadcasts
- Receivers use arrival time as a point of reference to compare clocks
- Multi-hop synchronization can be achieved

Limitation:
Need physical broadcast channel

Traditional Synchronization

$\xrightarrow{\text { Time }}$

RB Synchronization

Inter-receiver Phase Offset

Bit time is 52 micro-seconds

Estimation of Phase Offset - Algorithm

- A transmitter transmits m reference packets
- Each of the n receivers records the time that the reference was observed according to the local clock
- Receivers exchange observation
- Each pair of receivers compute the phase offset by averaging the m readings

Group Dispersion: max. of phase error between all receiver pairs

Estimation of Clock Skew

Oscillator:

- Accuracy
- Stability
- Assume frequency is stable over small time window
- Use least-squares linear regression
- Slope gives frequency offset
- Intercept gives phase offset

Estimation of Clock Skew - Experiment

Basic RBS Summary

- Removes largest sources of nondeterministic latency
- Multiple broadcasts decrease error, post-facto synchronization possible
- Outliers can be handled
- Local timescales can be constructed (absolute synchronization is a natural extension).

Multihop Time Synchronization

Multihop Time Synchronization

Multihop Time Synchronization

Multihop Time Synchronization

Summary

- RBS synchronizes a set of receivers with one another
- No explicit timestamp needed
- Largest sources of non determinism in latency removed
- Residual error is Gaussian (experimental observation)
- Post-facto synchronization possible

