# Tracking as a canonical problem for studying collaborative processing

Feng Zhao



### Recall the tracking scenario

(SN)

(c)

 $(\mathbf{d})$ 

(SN)

 $(\mathbf{e})$ 

(SN)

(SN)

(b)

a

#### **Constraints:**

- Node power reserve
- RF path loss
- Packet loss
- Initialization cost

(SN)

• ...

(SN)

(SN)

Bearing se sors (eg. PIR, beam ormer)

Range sensors (eg. Omni-microphone)

- 1. **Discovery**: Node *a* detects the target and initializes tracking
- 2. **Query processing**: User query *Q* enters the net and is routed towards regions of interest
- 3. **Collaborative Processing**: Node *a* estimates target location, with help from neighboring nodes
- 4. **Communication protocol**: Node a may hand data off to node b, b to c, ...
- 5. **Reporting**: Node *d* or *f* summarizes track data and send it back to the querying node

What if there are other (possibly) interfering targets?

What if there are obstacles?



### Where is the data and how to move it to where it will be needed?



For example, use directed diffusion routing (Estrin et al)

- Publish and subscribe
  - Interest from user/data attribute from source => gradient
  - Finding shortest paths in graph

But we must also consider the information content of the data ...



#### **Actively Seek Out Information**

"Find and track the animal" (minimize energy usage)



Break the barrier between application layer and routing

- Pick best info source considering network cost and information utility
- Implement selection in network, via routing decision.



## Information Optimization in Sensor Networks [Byers00, Zhao02]

**Example: target localization** 

#### **Challenge:**

Not all sensors provide useful information.

Some are useful, but redundant. Select next sensor to query to maximize information return while minimizing latency & bandwidth consumption

#### **Questions:**

- What is an appropriate measure of information utility and cost?
- How does one compute the utility? in the expected sense?
- How does each sensor node balance the information gain with cost and make a local decision about sensing, aggregation, and routing?

### **Bayesian Estimation**

Initial Distribution  $p(x_0)$ 



# DOA and Location Estimation [Chen02, Hegazy03]



- Far-field vs. near field
- Node time synch
- Single v.s. multiple sources

