
Information BrokerageInformation Brokerage

Leonidas Guibas
Stanford University

Sensing Networking

Computation

CS428CS428



Next Class

Thursday, April 28, 3:15 – 5:05 pm, in 
Gates 104



Project Schedule

E-mail with team members (groups of up 
to three students), one short paragraph 
description by Fri., April 22
PDF with detailed project description (3-4 
pages) by Wed., May 4
PDF with final write up by Wed., May 25
Final project demos May 26 - June 2



Information
Brokerage
Services

in
Dynamic 

Environments



Information Brokerage

Information providers (sources, producers) and 
information seekers (sinks, consumers) need 
ways to find out about and rendez-vous with 
each other
Example: Surveillance from a remote node r:

e.g.: Send to rSend to r reportreportss about animal about animal detectionsdetections in in 
region A every t secondsregion A every t seconds

Interrogation is propagated to sensor nodes in region A
Sensor nodes in region A are tasked to collect data
Data is sent back to the requestor r every t seconds



The Challenge is a Dynamic 
Environment [From D. Estrin]

The physical world is highly dynamic 
Dynamic operating conditions (sensing, 
networking)
Dynamic availability of resources

… particularly energy!
Dynamic tasks

Devices must adapt automatically to the 
current environment and the task 
requirements

Too many devices for manual configuration
Environmental conditions are unpredictable

Unattended and untethered operation is key 
for many applications



Data-Centric Paradigm

����������	


�����������������	�����	�����������������	
	

����������������� ������

�����	���������
����������	���������

����	
��	������
	�	


�����������������

���������	�����

��
��	������ ��	��!

�
�	���� ��"����"#�
�	�������� ����
���
����	���	��



Approach
Energy is the bottleneck resource

And communication is a major consumer – need to 
avoid communication over long distances

Pre-configuration based on detailed global 
knowledge is rarely applicable

Achieve desired global behavior through localized 
interactions 
Must empirically adapt to observed environment

Leverage points
Small-form-factor nodes, densely distributed to 
achieve physical proximity to sensed phenomena
Application-specific, data-centric networks
Data processing/aggregation inside the network



Directed Diffusion
[Intanagonwiwat, Govindan, Estrin ‘00]



Directed Diffusion Concepts
Application-aware communication primitives

expressed in terms of named data (not in terms of the nodes 
generating or requesting data) 

A consumer of data, a sink node, initiates an interest in 
data with certain attributes
Nodes diffuse the interest towards data producers 
(sources), via a sequence of local interactions
This process sets up gradients in the network which 
channel the delivery of data
Reinforcement (positive and negative) is used to 
converge to efficient routes
Intermediate nodes opportunistically fuse interests, 
aggregate, correlate, or cache data ...



Data Naming

Content-based naming
Data is named by attribute–value pairs
This makes matching of interests with data simple
Selecting a naming scheme important and more complex ones 
can be considered
The nodes where information resides are not part of the naming 
scheme

Request: Interest
type = four-legged animal

interval = 20 ms

duration = 10 seconds

rect = [-100,100,200,200]

Reply: Data
type = four-legged animal

instance = elephant
location = [125, 220]

Intensity = 0.6
confidence = 0.85
timestamp = 01:20:40



Interests and Gradients

Interests describe data needed by a node in the sensor 
network

Interests are injected into the network at sinks.
Sinks broadcast the interest. 
An interval specifies the event data rate desired.
Initially, requested intervals are much larger than needed. 
Each node maintains an interest cache. 

Each cache interest entry also contains gradients.
Specifies a data rate and a direction of data flow for each 
requesting neighbor
Data flows from the source to the sink along the gradient links



13

Illustrating Directed Diffusion

Sink



14

Illustrating Directed Diffusion

Sink

interests propagate



15

Illustrating Directed Diffusion

Sink

gradients are set up



16

Illustrating Directed Diffusion

Sink

and so on ...



17

Illustrating Directed Diffusion

Sink



18

Illustrating Directed Diffusion

Sink



19

Illustrating Directed Diffusion

Sink



20

Illustrating Directed Diffusion

Sink



21

Illustrating Directed Diffusion

Sink

Source

Now data starts to
flow back to the sink



22

Illustrating Directed Diffusion

Sink

Source

across multiple paths



23

Illustrating Directed Diffusion

Sink

Source

and reaches the sink



24

Illustrating Directed Diffusion

Sink

Source

possibly across 
multiple neighbors



25

Illustrating Directed Diffusion

Sink

Source

the sink reinforces
one of the paths, by
increasing the data rate
requested



26

Illustrating Directed Diffusion

Sink

Source

the reinforcement 
propagates



27

Illustrating Directed Diffusion

Sink

Source

and reaches the source



28

Illustrating Directed Diffusion

Sink

Source

the source sends data
at a higher data rate
along the reinforced path



29

Illustrating Directed Diffusion

Sink

Source



30

Illustrating Directed Diffusion

Sink

Source



31

Illustrating Directed Diffusion

Sink

Source

and a high data
rate path has
been established



32

Illustrating Directed Diffusion

Sink

Source

other gradients start
to expire



33

Illustrating Directed Diffusion

Sink

Source

and more expire



34

Illustrating Directed Diffusion

Sink

Source

and more expire



35

Illustrating Directed Diffusion

Sink

Source

until only the reinforced
path is left



Interest Propagation

Involves flooding the network
Could use constrained or bidirectional flooding based on 
source location.
Directional propagation can also be based on previously 
cached data.

Source

Sink

Interest

Gradient



Data Propagation
Source nodes match 
signature waveforms from 
codebook against 
observations
Nodes match data against 
interest cache, compute 
highest event-rate request 
from all gradients, and (re)-
sample events at this rate 
Intermediate receiving nodes:

Find matching entry in interest 
cache; no match � silent drop
Check and update data cache 
(loop prevention, aggregation, 
duplicate suppression, etc.)
Retrieve all gradients, and 
resend message, performing 
frequency conversion if 
necessary

Source

Sink

Gradient

Data



Reinforcement

Reinforce one of the neighbor after receiving initial data.
Neighbor(s) from whom new events are received.
Neighbor who is consistently performing better than others.
Neighbor from whom most events are received.

Source

Sink

Gradient

Data

Reinforcement



Negative Reinforcement

Explicitly degrade some paths by re-sending interests
with lower data request rates.
Cache entries time out if not reinforced

Source

Sink

Gradient

Data

Reinforcement



Other Aspects of Directed Diffusion



Local Repair for Failed Paths
Intermediate nodes on a previously 
reinforced path can apply reinforcement 
rules (useful for failed or degraded paths)
C detects degradation

By noticing that the event reporting rate from 
its upstream neighbor (source) is now lower
By realizing that other neighbors have been 
transmitting previously unseen location 
estimates.

And appIies reinforcement rules
Problem: wasted resources (e.g., if other 
downstream nodes also do the same)
Avoid this by interpolating location 
estimates from the events 



DD Scenario Notes
Reinforcement (optimization):

Data-driven rules; ex., new msg. from neighbor � resend original with 
smaller sampling interval
This neighbor, in turn, reinforces upstream nodes
Local rule : minimize delay; other rules are possible
Passive negative reinforcement (timeouts) or active (negative weights)

Multiple sources + reinforcement
Works in some cases, open for further exploration

Multiple sinks: Exploit prior setup (i.e., use cache)
Intermediate nodes use reinforcement for local repair

Cascading reinforcement discoveries from upstream can be a problem; 
one soln.: interpolate requests to preserve status-quo



43

Local Behavior Choices

1. For propagating interests
In our example, flood
More sophisticated behaviors 

possible: e.g. based on 
cached information, GPS

2. For setting up gradients
Highest gradient towards 

neighbor from whom we 
first heard interest

Others possible: towards 
neighbor with highest 
energy

3. For data transmission
Different local rules can result in 

single path delivery, striped 
multi-path delivery, single 
source to multiple sinks and 
so on.

4. For reinforcement
reinforce one path, or part 

thereof, based on observed 
losses, delay variances etc.

other variants: inhibit certain 
paths because resource levels 
are low



DD Design Space



Initial Simulation Study of 
Diffusion

Key metric
Average Dissipated Energy per event delivered

captures energy efficiency and network lifetime

Compare directed diffusion to 
flooding
centrally computed dissemination tree (omniscient 
multicast)



Diffusion Simulation Details
Simulator: nsns--22
Network Size: 50-250 Nodes
Transmission Range: 40m
Constant Density: 1.95x10-3 nodes/m2 (9.8 nodes in 
radius)
MAC: Modified Contention-based MAC
Energy Model: Mimic a realistic sensor radio [Pottie
2000]

660 mW in transmission, 395 mW in reception, and 35 mw in idle
mode



Diffusion Simulation

Surveillance application
5 sources are randomly selected within a 70m x 70m 
square field
5 sinks are randomly selected across the field
High data rate is 2 events/sec
Low data rate is 0.02 events/sec
Event size: 64 bytes
Interest size: 36 bytes
All sources send the same location estimate for base All sources send the same location estimate for base 
experimentsexperiments



Average Dissipated Energy 
(Standard Standard 802.11802.11 energy model)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

si
pa

te
d 

E
ne

rg
y 

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d 

E
ve

nt
)

Network Size

DiffusionDiffusion

Omniscient MulticastOmniscient MulticastFloodingFlooding

Standard 802.11 is dominated by idle energy



Average Dissipated Energy 
(Sensor radioSensor radio energy model)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

si
pa

te
d 

E
ne

rg
y 

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d 

E
ve

nt
)

Network Size

DiffusionDiffusion

Omniscient MulticastOmniscient Multicast

FloodingFlooding

Diffusion can outperform flooding and even omniscient 
multicast. Why ?



Impact of In-Network 
Processing

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

si
pa

te
d 

E
ne

rg
y

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d 

E
ve

nt
)

Network Size

Diffusion With Diffusion With 
SuppressionSuppression

Diffusion Without Diffusion Without 
SuppressionSuppression

ApplicationApplication--level duplicate suppression allows diffusion to level duplicate suppression allows diffusion to 
reduce traffic and to surpass omniscient multicast.reduce traffic and to surpass omniscient multicast.



Impact of Negative 
Reinforcement

0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

si
pa

te
d 

E
ne

rg
y 

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d 

E
ve

nt
)

Network Size

Diffusion With Negative Diffusion With Negative 
ReinforcementReinforcement

Diffusion Without Diffusion Without 
Negative ReinforcementNegative Reinforcement

Reducing highReducing high--rate paths in steady state is criticalrate paths in steady state is critical



Summary of Diffusion Results

Under the investigated scenarios, diffusion 
outperformed omniscient multicast and flooding
Application-level data dissemination has the 
potential to improve energy efficiency 
significantly

Duplicate suppression is only one simple example 
out of many possible ways.
Data aggregation

All layers have to be carefully designed
Not only network layer but also MAC and application 
level

More experimentation is needed



Tiny Diffusion

Implementation of Diffusion on resource 
constrained UCB motes

8 bit CPU, 8k program memory, 512 bytes 
data memory
Subset of full system
Retains only gradients and condenses 
attributes to a single tag
Entire system runs in less than 5.5 KB 
memory



Contd…

Tiny OS adds ~3.5 KB and 144 bytes of data 
(inclusive support for radio and photo sensor
Diffusion adds ~2k code and 110 bytes of data 
to tiny OS



Tiny Diffusion Functionality

Resource constrained
Limited cache size -- currently 10 entries 
of 2 bytes each
Limited ability to support multiple traffic 
streams. Currently supports five 
concurrently active gradients



Pull vs. Push Variations

One could also diffuse data from source, 
in search of relevant sinks – a completely 
dual approach
Or one could try a combination push/pull 
strategy:

pull: sink 2-D, source 0-d
push: sink 0-d, source 2-d
what about: sink 1-d, source 1-d



Alternative Methods

Query flooding
Expensive for high query/event ratio
Allows for optimal reverse path setup
Gossiping schemes can be use to reduce overhead

Event Flooding
Expensive for low query/event ratio
there are effective methods for gradient setup

Note :
Both of them provide shortest delay paths



Rumor Routing

Designed for query/event ratios between query 
and event flooding
Motivation

Sometimes a non-optimal route is satisfactory
Advantages

Tunable best effort delivery
Tunable for a range of query/event ratios

Disadvantages
Optimal parameters depend heavily on topology (but 
can be adaptively tuned)
Does not guarantee delivery



Rumor Routing



Basis for Algorithm

Observation: Two lines in 
a bounded rectangle 
have a 69% chance of 
intersecting
Create a set of straight 
line gradients from event, 
then send query along a 
random straight line from 
source. 

$����

�	��



Creating Paths
Nodes having observed 
an event send out agents 
which leave routing info 
to the event as state in 
the nodes they pass 
through
Agents attempt to travel 
in a straight line
If an agent crosses a path 
of another event, it begins 
propagates paths to both
Agents also optimize 
paths if they find shorter 
ones.



Algorithm Basics

All nodes maintain a neighbor list.
Nodes also maintain a event table

When a node observes an event, the event is 
added to the event table with distance 0.

Agents
Agents are packets that carry local event info 
across the network.
Agents aggregate events as they go.



Agents



Agent Path

An agent tries to travel in a “somewhat”
straight path.

Maintains a list of recently seen nodes.
When it arrives at a node, it adds the node’s 
neighbors to the list.
For its next hop, it tries to find a node not in 
the recently seen list.
Avoids loops
Important to find a path regardless of “quality”



Following Paths

A query originates from source, and is 
forwarded along until it reaches its TTL 
(time to live)
Forwarding Rules:

If a node has seen the query before, it is sent 
to a random neighbor
If a node has a route to the event, forward to 
neighbor along the route
Otherwise, forward to random neighbor using 
straightening algorithm



Energy Comparison

Rumor Routing (1000 queries)
Es + Q*(Eq + N*(1000-Qf)/1000)
Es = avg. energy to set up path
Eq = avg. energy to route a query
Qf = successful queries
Q queries are routed

Query Flooding
Q*N

Event Flooding
E*N



Simulation Scenario

Simple radial propagation model with symmetric 
reliable transmission (r=5)
Dense network of nodes (3000, 4000, 5000 in 
field of 200x200m2)
Simultaneous circular events of radius 5m (10, 
50, 100)
Varied parameters to find optimal ranges

Number of agents per event
Agent TTL
Query TTL



Simulation Results

Bad : Agent TTL 100, number of agents around 
25.
Large value of number of agents (around 400) 
had high setup cost but better delivery rate, so 
lower average energy consumption.
Best Result

Agents = 31
Agent TTL 1000
98.1 % queries delivered
energy spent 1/20-th of a network flood.



Simulation Results
Assume that undelivered 
queries are flooded
Wide range of parameters 
allow for energy saving over 
either of the naïve alternatives
Optimal parameters depend on 
network topology, query/event 
distribution and frequency
Algorithm was very sensitive to 
event distribution

10 Events, 4000 Nodes

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40

Number of Queries

N
um

be
r 

of
 T

ra
ns

m
is

si
on

s 
(t

ho
us

an
ds

)

Query Flooding

A=28, La=500, Lq=1000

A=52, La=100, Lq=2000

Event Flooding



Fault Tolerance

After agents propagated paths to events, 
some nodes were disabled.
Delivery probability degraded linearly up to 
20% node failure, then dropped sharply
Both random and clustered failure were 
simulated with similar results



Some Thoughts

The effect of event distribution on the results is 
not clear.
The straightening algorithm used is essentially 
only a random walk … can something better be 
done?
The tuning of parameters for different network 
sizes and different node densities is not clear.
There are no clear guidelines for parameter 
tuning, only simulation results in a particular 
environment.



Information Brokerage
Using Network Storage



Storage in a Sensor Network

In some applications, continuously 
streamed data from sources is not 
required
It is sufficient to save a summarized form 
of the data, for later retrieval
But where should this data be stored? And 
how can it be retrieved?
More about this in a few weeks ...



Observations/Events/Queries

Observations
Low-level output from sensors

Events
Constellations of low-level observations, interpreted 
as higher-level events or activities
E.g. fire, intruder

Clients use Queries to elicit event information 
from sensor network

E.g.: Locations of fires in the network
E.g.: Images of intruders detected



Possible Approaches

External Storage (ES)
Local Storage (LS)
Data-Centric Storage (DS)



External Storage (ES)

Base station



ES Problems



Local Storage (LS)

Event
Data

Event
Data

?

?
?

?

Directed Diffusion



Local Storage (LS)

Event
Data

Event
Data



Data-Centric Storage (DCS)

Data-Centric: data is named by attributes
Event data is stored, by name, at home 
nodes; home nodes are selected by the 
named attributes
Queries also go to the home nodes to 
retrieve the data (instead of to the nodes 
that detected the events)
Home nodes are determined by a hash 
function + GPSR



Algorithms Used by GHT

Geographic hash table uses GPSR for 
routing

(Greedy perimeter stateless routing)

PEER-TO-PEER look up system
(data object is associated with key and each 
node in the system is responsible for storing a 
certain range of keys) 



The Big Picture

Based on geographic routing (Karp) and 
P2P lookup algorithm (Ratnasamy)

Data-Centric Storage Schema

��������	
��� ����	���



Distributed Hash Table (DHT)

void Put(key,value)
Stores value in home node of the sensor 
network, according to attribute key

Value Get(key)
Retrieve value from home node of the 
sensor networks according to key

���� 	����
����
��������
��������	����

��� �������



Properties of DHT

Uses a distributed hash function
Hash function is known to all nodes
Every home node takes care of roughly the 
same amount of event types
Evenly distributed geographically

Candidate: Message Digest Algorithms
Such as SHA-1, MD5



DHT - Example

Example

�� �!"���#

$�%

%�&'�()*�'�+�,+%,(-.)�//))%%&-�0

$�!!�����������

��������



DCS – Example Revisit

PDA

	))�0(1��2"	�� �!"���#

	))��0(
�	
��������
�����
��



DCS – Example

PDA

	))��0(

	))�0(1��2"	�� �!"���#

��
��������
��



DCS – Example

PDA

� �!"���

����

����



Home Node and Home Perimeter

In GHT packet is not addressed 
to specific node but only to a 
specific location in the field
The packet will circle around the 
face of the GPSR face 
containing the destination 
location
The packet will traverse the 
entire perimeter that encloses 
the destination and eventually be 
consumed at the home node (the 
node closest to destination) –
and that perimeter is known as 
the home perimeter

E

F

B

D

A

C

L

home

Replica



Problems with DCS

Not robust enough
Home nodes could fail
Nodes could move (new home node?)

Not scalable
Home nodes could become communication 
bottlenecks
Storage capacity of home nodes



Conclusions

Brokerage between information providers and 
seekers is a fundamental problem in wireless 
sensor networks
Reactive protocols are best, to accommodate 
dynamics both in the phenomena being 
monitored, as well as in the network itself
Both push and pull paradigms apply, and 
various combinations
In-network storage can provide rendez-vous
points between data producers and consumers



The End


