Sensor Tasking and Control

Leonidas Guibas Stanford University

Sensor systems are about sensing, after all ...

System State

Continuous and Discrete Variables

- The quantities that we may want to estimate using a sensor network can be either continuous or discrete
- Examples of continuous variables include

 a vehicle's position and velocity
 the temperature in a certain location

 Examples of discrete variables include

 the presence or absence of vehicles in a certain area
 the number of peaks in a temperature field

Uncertainty in Sensor Data

- Quantities measured by sensors always contain errors and have associated uncertainty – thus they are best described by PDFs.
 - interference from other signal sources in the environment
 - systematic sensor bias(es)
 - measurement noise

The quantities we are interested in may differ from the ones we can measure – they can only indirectly be inferred from sensor data. They are also best described by PDFs.

Information Sources

- Past information, together with knowledge of the temporal evolution laws for the system of interest
- Current sensor measurements

Sensor Models

Sensor Models

- To be able to develop protocols and algorithms for sensor networks, we need sensor models
- Our state PDF representations must allow expression of the state ambiguities inherent in the sensor data
- Need to be aware of the effect of sensor characteristics on system performance
 - cost, size, sensitivity, resolution, response time, energy use, calibration and installation ease, etc.

Acoustic Amplitude Sensors

 Lossless isotropic propagation from a point source

$$z = \frac{a}{\parallel x - \zeta \parallel} + w$$

 Say w Gaussian N(0,σ), a uniform in [a_{lo}, a_{hi}]

$$p(z|x) = \frac{r}{\Delta_a} \left[\Phi\left(\frac{a_{hi} - rz}{r\sigma}\right) - \Phi\left(\frac{a_{lo} - rz}{r\sigma}\right) \right] \\ \Delta_a = a_{hi} - a_{lo} \\ \text{error function} \quad r = \parallel z - \zeta \parallel$$

DoA Sensors

 Beam-forming with microphone arrays

 $g_m(t) = s_0(t - t_m) + w_m(t)$

• Far field assumption

Beamforming Error Landscape

σ

 Direction estimates are only accurate within a certain range of distances from the sensor

$$p(z \mid \theta) = (1/\sqrt{2\pi\sigma^2}) \exp(-(z-\theta)^2/2\sigma^2)$$

PDF for beamforming sensor

Performance Comparison and Metrics or Detection/Localization

- Detectability
- Accuracy
- Scalability
- Survivability
- Resource usage

Receiver Operator Characteristic (ROC) curve

System Perfomance Metrics and Parameters

Performace	detection	spatial	latency	robustness to	power
metrics	quality	resolution		failure	efficiency
System, application parameters	SNR, distractors	target, node spacing	Link delay, target #, query #	node loss	active/sleep ratio, sleep efficiency

Probabilistic Estimation

[From Thrun, Brugard, and Fox]

Recursive State Estimation

• State x:

- external parameters describing the environment that are relevant to the sensing problem at hand (say vehicle locations in a tracking problem)
- internal sensor settings (say the direction a pan/tilt camera is aiming)

While internal state may be readily available to a node, external state is typically hidden – *it cannot be directly observed but only indirectly estimated*.

States may only be known probabilistically.

Environmental Interaction

Control u:

 a sensor node can change its internal parameters to improve its sensing abilities

Observation z:

a sensor node can take various measurements of the environment

Discrete Time t: 0, 1, 2, 3, ...

$$X_{t}, U_{t}, Z_{t}$$
 $Z_{t_{1}:t_{2}} \equiv Z_{t_{1}}, Z_{t_{1}+1}, Z_{t_{1}+2}, Z_{t_{1}+3}, \cdots, Z_{t_{2}}$

Basic Probability

Random variables (discr. or cont.) and probabilities

$$p(X = x), \quad \sum_{x} p(x) = 1 \quad \text{or} \quad \int_{x} p(x) dx = 1$$

Independence of random variables

$$P(X = x, Y = y) = p(x, y) = p(x)p(y)$$

Conditional probability

p(x|y) = p(x, y)/p(y) (= p(x) if x and y are independent)

 $p(x) = \sum_{y} p(x|y)p(y) \text{ (discrete case)}$ $p(x) = \int_{y} p(x|y)p(y) dy \text{ (continuous case)}$

Bayes Rule

$$p(x|y) = p(y|x)p(x)/p(y) = \frac{p(y|x)p(x)}{\sum_{x'} p(y|x')p(x')} \quad \text{(discrete)}$$
$$= \frac{p(y|x)p(x)}{\int_{x'} p(y|x')p(x')dx'} \quad \text{(continuous)}$$

$$p(x|z) = \eta p(z|x) p(x)$$

probability of state x, given measurement z

probability of measurement *z*, given state *x* (the sensor model)

Expectation, Covariance, Entropy

Expectation

 $E(X) = \sum_{x} x p(x) \text{ or } \int_{x} x p(x) dx \qquad E(aX+b) = aE(X) + b$

Covariance (or variance)

 $Cov(X) = E(X - E(X))^2 = E(X^2) - E(X)^2$

Entropy

$$H(X) = E(-\lg p(X)) = -\sum_{x} p(x) \lg p(x)$$

Probabilistic Generative Laws

• State x_t is generated stochastically by

$$p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$$

Markovian assumption (state completeness)

$$p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t)$$
$$p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$$

The Bayes Filter

Gaussian Filters

 Beliefs are represented by multivariate Gaussian distributions

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Here μ is the mean of the state, and $\Sigma\,$ its covariance

Appropriate for unimodal distributions

The Kalman Filter

 Next state probability must be a linear function, with added Gaussian noise [result still Gaussian]

> $x_{t} = A_{t}x_{t-1} + B_{t}u_{t} + \varepsilon_{t} - Gaussian \text{ noise with zero mean}$ and covariance R_{t}

$$p(x_t | u_t, x_{t-1}) = \det(2\pi R_t)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1}(x_t - A_t x_{t-1} - B_t u_t)\right\}$$

Measurement probability must also be linear in it arguments, with added Gaussian noise

$$z_{t} = C_{t} x_{t-1} + \delta_{t} \quad \text{Gaussian noise with zero mean} \\ \text{and covariance } Q_{t} \\ p(z_{t} | x_{t}) = \det(2\pi Q_{t})^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(z_{t} - C_{t} x_{t})^{T} Q_{t}^{-1}(z_{t} - C_{t} x_{t})\right\}$$

Kalman Filter Algorithm

• Algorithm Kalman_Filter $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$

$$\mu_t = A_t \,\mu_{t-1} + B_t \,u_t$$
$$\overline{\Sigma}_t = A_t \,\Sigma_{t-1} \,A_t^T + R_t$$

belief predicted by system dynamics

 $K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q)^{-1} \text{ (the Kalman gain)}$

$$\mu_t = \overline{\mu_t} + K_t \left(z_t - C_t \, \overline{\mu_t} \right)$$
$$\Sigma_t = \left(I - K_t \, C_t \right) \overline{\Sigma}_t$$

belief updated using measurements

Kalman Filter Illustration

Kalman Filter Extensions

The Extended Kalman Filter (EKF)

Mixtures of Gaussians

Non-Parametric Filters

- Parametric filters parametrize a distribution by a fixed number of parameters (mean and covariance in the Gaussian case)
- Non-parametric filters are discrete approximations to continuous distributions, using variable size representations
 - essential for capturing more complex distributions
 - do not require prior knowledge of the distribution shape

Histogram Filters

Histogram from a Gaussian, passed through a nonlinear function

The Particle Filter

Samples from a Gaussian, passed through a nonlinear function

Illustration of Importance Sampling

We desire to sample f

We can only, however, sample g

Samples from g, reweighted by the ratio f(x)/g(x)

The Particle Filter Algorithm

• Algorithm Particle_Filter (X_{t-1}, u_t, z_t)

number of particles of unit weight $X_{t} = X_{t} = \emptyset$ for m = 1 to M do stochastic propagation sample $x_{t}^{[m]} \quad p(x_{t} | u_{t}, x_{t-1}^{[m]})$ $w_t^{[m]} = p(z_t | x_t^{[m]}); \ \overline{X}_t = \overline{X}_t \cup \left\langle x_t^{[m]}, w_t^{[m]} \right\rangle$ endfor importance weights for m = 1 to M do draw *i* with probability proportional to $w_t^{[i]}$ add $x_t^{[i]}$ to X_t resampling, or importance sampling return X_t

An Example Problem

An Example Sensor Network Problem

- One or more targets are moving through a sensor field
- The field contains networked acoustic amplitude and bearing (DoA) sensors
- Queries requesting information about object tracks may be injected at any node of the network
- Queries may be about reporting all objects detected, or focused on only a subset of the objects.

Direction of Arrival (DOA)

The Tracking Scenario

(SN

Constraints:

- Node power reserves
- RF path loss
- Packet loss

• ...

Initialization cost

1. **Discovery**: Node *a* detects the target and initializes tracking

2. **Query processing**: User query *Q* enters the net and is routed towards regions of interest

3. **Collaborative Processing**: Node *a* estimates target location, with help from neighboring nodes

4. **Communication protocol**: Node *a* may hand data off to node *b*, *b* to *c*, ...

5. **Reporting**: Node *d* or *f* summarizes track data and send it back to the querying node

What if there are other (possibly) interfering targets?

What if there are obstacles?

Q

 Query must be routed to the node best able to answer it

 Sensor a senses the location of the target and chooses the next best sensor

 Sensor *d* both chooses the next best sensor and also sends a reply to the query node

 Sensor *f* loses the target and sends the final response back to the query node

Key Issues

- How is a target detected? How do we suppress multiple simultaneous discoveries?
- How do nodes from collaboration groups to better jointly track the target(s)? How do these groups need to evolve as the targets move?
- How are different targets differentiated and their identities maintained?
- What information needs to be communicated to allow collaborative information processing within each group, as well as the maintenance of these groups under target motion?
- How are queries routed towards the region of interest?
- How are results from multiple parts of the network accumulated and reported?

Formulation

- Discrete time *t* = 0, 1, 2 ...
- K sensors; λ_i^t characteristics of the *i*-th sensor at time *t*
- N targets; X^t_i state of target i at time t; X^t is the collective state of all the targets; state of a target is its position in the x-y plane
- Measurement of sensor i at time t is z_i^t ; collective measurements from all sensors together are z^t
- z_i^t and z^t denote the respective measurement histories over time

Sensing Model

Back to estimation theory

 $egin{aligned} & z_i^t = h(x^t,\lambda_i^t) & ext{measurement function} \ & z_i^t = H_i^t(\lambda_i^t)\,x^t + w_i^t \end{aligned}$

 Assume time-invariant sensor characteristics

Use only acoustic amplitude sensors

$$\lambda_i = \left[\zeta_i, \sigma_i^2\right]^T, \quad z_i = \frac{a_i}{\|x_i - \zeta_i\|^{\alpha/2}} + w_i$$

Collaborative Single Target Localization

- Three distance measurements are needed to localize a point in the plane (because of ambiguities)
- Linearization of quadratic distance equations

 $c_i^T x = d_i$

$$\| x \|^{2} + \| \zeta_{i} \|^{2} - 2x^{T} \zeta_{i} = \frac{a_{i}}{z_{i}}, \quad i = 1, 2, 3, \dots$$
$$-2(\zeta_{i} - \zeta_{1})^{T} x = a_{i} \left(\frac{1}{z_{i}} - \frac{1}{z_{1}} \right) - (\| \zeta_{i} \|^{2} - \| \zeta_{1} \|^{2})$$

subtract equation 1 from equation i

_____ Sensor 1 Sensor 2

Sensor 3

Least Squares Estimation

- Since the state x has two components, three measurements are needed to obtain two equations
- More measurements lead to an over-determined system
 -- which can yield more robust estimates via standard least squares techniques

$$Cx = d$$
 $(K-1) \times 2, 2 \times 1 = (K-1) \times 1$

$$x = \left[\left(C^T C \right)^{-1} C^T \right] d$$

Least-squares solution

Distributed State Estimation

- Observations z are naturally distributed among the sensors that make them
- But which node(s) should hold the state x? Even in the single target case (N=1), this is not clear...

all nodes hold the state

a single fixed node holds the state

a variable node holds the state (the leader)

Many, Many Questions and Trade-Offs

- How are leader nodes to be initially selected, and how are they handed off?
- What if a leader node fails?
- How should the distribution of the target state (= position) be represented? parametrically (Gaussian) or non-parametrically (particles)?

Best-possible state estimation, under constraints

Communication, Delay, Power IDSQ: Information-Driven Sensor Querying

IDSQ: Information-Driven Sensor Querying

Localize a target using multiple acoustic amplitude sensors

Challenge

• Select next sensor to query to maximize information return while minimizing latency & bandwidth consumption

Ideas

- Use information utility measures
 - E.g. Mahalanobis distance, volume of error covariance ellipsoid
- Incrementally query and combine sensor data

Tracking Multiple Objects

- New issues arise when tracking multiple interacting targets
 - The dimensionality of the state space increases this can cause an exponential increase in complexity (e.g., in a particle representation)
- The distribution of state representation becomes more challenging
 - One leader per target?
 - What if targets come near and they mix (data association problem)?

State Space Decomposition

- For well-separated targets, we can factorize the joint state space of the *N* targets into its marginals
- Such a factorization is not possible when targets pass near each other
- Another factorization is between target locations and identities
 - the former require frequent local communication
 - the latter less frequent global communication

Data Association

- Data association methods attribute specific measurements to specific targets, before applying estimation techniques
 - Even when there is no signal mixing, the space of possible associations is exponential: N!/K! possible associations (N = # of targets, K = # of sensors)
 - Signal mixing makes this even worse: 2^{*NK*} possible associations
- Traditional data association methods are designed for centralized settings

• Multiple Hypothesis Tracking (MHT)

- Joint Probabilistic Data Association (JPDA)
- Network delays may cause measurements to arrive out of order in the nodes where the corresponding state is being held, complicating sequential estimation

Conclusion

- An appropriate state representation is crucial
 - Different representations may be needed at different times
 - The distribution of state raises many challenges
- Information utility:
 - Directs sensing to find more valuable information
 - Balances cost of power consumption and benefit of information acquisition

