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Sensor systems are
about sensing, after
all ...



System State



Continuous and Discrete Variables

a@ The quantities that we may want to estimate
using a sensor network can be either continuous
or discrete

@ Examples of continuous variables include
@ a vehicle’s position and velocity
@ the temperature in a certain location

@ Examples of discrete variables include
@ the presence or absence of vehicles in a certain area
@ the number of peaks in a temperature field



Uncertainty in Sensor Data

@ Quantities measured by sensors always contain
errors and have associated uncertainty — thus
they are best described by PDFs.

@ interference from other signal sources in the
environment

@ systematic sensor bias(es)
@ measurement noise

@ The quantities we are interested in may differ
from the ones we can measure — they can only
indirectly be inferred from sensor data. They are
also best described by PDFs.



Information Sources

@ Past information, together with knowledge of the
temporal evolution laws for the system of
interest

@ Current sensor measurements

Prior knowledge Current measurements
+

Current knowledge (the posterior)




Sensor Models



Sensor Models

@ To be able to develop protocols and algorithms
for sensor networks, we need sensor models

@ Our state PDF representations must allow
expression of the state ambiguities inherent in
the sensor data

@ Need to be aware of the effect of sensor

characteristics on system performance

@ cost, size, sensitivity, resolution, response time,
energy use, calibration and installation ease, etc.



Acoustic Amplitude Sensors

@ Lossless isotropic
propagation from a point
source
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DoA Sensors

@ Beam-forming with
microphone arrays

8, (1) =8,(t—1,)+w, (1)

@ Far field assumption
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Beamforming Error Landscape

o Direction estimates are o .
only accurate within a |
certain range of distances
from the sensor

p(z10)=(1/\2nc”)exp(—(z—0)* /207)

PDF for beamforming .
sensor




Performance Comparison and
Metrics or Detection/Localization

e Detectability Receiver Operator Characteristic
@ Accuracy (ROC) curve

@ Scalability

@ Survivability 1.00r

@ Resource usage
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System Perfomance Metrics and

Performace
metrics

System,
application
parameters

Parameters
detection | spatial robustness to | power
: . latency : -
quality resolution failure efficiency
target Link active/slee
SNR, 9L 1 delay, | P
i node target # node loss ratio, sleep
SIEGIOE spacing get #, efficiency
query #




Probabilistic Estimation

[From Thrun, Brugard, and Fox]



Recursive State Estimation

a State x:

@ external parameters describing the environment that
are relevant to the sensing problem at hand (say
vehicle locations in a tracking problem)

@ internal sensor settings (say the direction a pan/tilt
camera is aiming)

While internal state may be readily available to a
node, external state is typically hidden — it cannot
be directly observed but only indirectly estimated.

States may only be known probabilistically.



Environmental Interaction

a Control u:

@a sensor node can change its internal
parameters to improve its sensing abilities

3 Observation z:

@a sensor node can take various
measurements of the environment

@ Discrete Time ¢: 0,1, 2, 3, ...

xt,ut, Zt ZtI:tZ — Zl—19Zt1_|_19 Zt1_|_29zt1_|_39...9z
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Basic Probability

@ Random variables (discr. or cont.) and probabilities

p(X=x, Y px)=1 or fxp(x)dle
@ Independence of random variables

P(X =x,Y =y)=px,y)= p(x)p(y)
@ Conditional probability

p(x‘y) = p(x,y)/p(y) (= p(x)1if x and y are independent)

p(x) = Z p(x‘ y)p(y) (discrete case)
p(x) = f p(x‘ y)p(y)dy (continuous case)



Bayes Rule

P(y\X)p(X) .
— discrete
> pO]x)px) ( )
p(x|y) = p(y|x) p(x)/ p(y)
B P(y\X)p(X) .
— (continuous)
| pGlopyax

p(x|z) =np(z|x) p(x)

robability of state x, given \
Ironeasurersr/1ent > 9 probability of measurement z,
given state x (the sensor model)



Expectation, Covariance, Entropy

@ Expectation

E(X):pr(x) or fxp(x)dx E(aX +b)=aE(X)+b

X

@ Covariance (or variance)

Cov(X)=E(X —E(X))’=EX*)—E(X)’

@ Entropy

H(X)=E(-lgp(X))=-)>_ p(x)lg p(x)

X



Probabilistic Generative Laws

a State X, Is generated stochastically by
p(x, ‘XO:t—l > L1415 Uy

9 Markovian assumption (state
completeness)

p(x, ‘xo:z—l , Zy_po Uy, ) = DX, ‘xt—l u,)

p(Zt ‘szt’ Z1:t—1’ul:t) — p(Zt ‘Xt)



The Bayes Filter

@ Belief distributions the prior belief

. theposterior belief /
b(x,) = p(x, ‘Zu u,), bx)=px, ‘Zl:t—l Uy, )

@ Algorithm Bayes_Filter(b(x,_,),u,,z,)

for all x, do
b(x)= [ p(x,|u, %, )b(x, ) dx [prediction]

b(x,)=mn p(z ‘xt)E(xt) [observation]
endfor

return b(x, )



Gaussian Filters

@ Beliefs are represented by multivariate
Gaussian distributions

1

p(x) = det(27Y) 2 exp [—%(x — ) XN (x—p)

Here 1 is the mean of the state, and X its covariance

a Appropriate for unimodal distributions



The Kalman Filter

@ Next state probability must be a linear function, with
added Gaussian noise [result still Gaussian]

Gaussian noise with zero mean
and covariance R,

X = Axt—l —l_Btut —|_€t

!

1

— 1
u,,x_,)=det(2rR) *exp {—5 (x, —Ax_,—Bu) R '(x —Ax_, — Btut)]

p(x,

@ Measurement probability must also be linear in it
arguments, with added Gaussian noise

7, = Ctxt_l + 5¢ <— (Gaussian noise with zero mean

and covariance 0,
1

p(z,|x,) = det(2mQ,) 2 exp{—% (z,—Cx) O '(z, — Ctxt)]



Kalman Filter Algorithm

a Algorithm Kalman_Filter (. .=, ,u,z)

pt :AT,LLI_1—|—BtI/tt
S =A% A +R

belief predicted by
system dynamics

K=%C"(C % C'+0Q)" (theKalman gain)

o7 =;t T Kt (Zt o Ct ;t)
> =(—K C)%

belief updated
using measurements




Kalman Filter lllustration




Kalman Filter Extensions

@ The Extended Kalman Filter (EKF)

— %L\

a Mixtures of Gaussians



Non-Parametric Filters

@ Parametric filters parametrize a distribution by a
fixed number of parameters (mean and
covariance in the Gaussian case)

@ Non-parametric filters are discrete
approximations to continuous distributions, using
variable size representations

@ essential for capturing more complex distributions

@ do not require prior knowledge of the distribution
shape



Histogram Filters

niy) - — Function g(x) |
L__| Histogram |

Histogram from a

Gaussian, passed

- through a non-

linear function

y=g(x]
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The Particle Filter

pivy — Function gix)

|
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[T
y=gix)

T

Samples from a
Gaussian, passed
through a non-
linear function

pIx]

Samples
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lllustration of Importance Sampling

@

We desire to sample f

We can only, however, sample g

Samples from g, reweighted
by the ratio f(x)/g(x)



The Particle Filter Algorithm

@ Algorithm Particle Filter (X,_.u,.z)

X — ft — v number of particles of unit weight

form=1toM do stochastic propagation

[m]
7Y tl

[m]) Xf X U< [m]. [m]>

t

sample X" 0 p(x,|u, ,x

endfor
form=1toM do

draw i with probability proportional to w'"

add xt[’] to X, \ resampling, or

Importance samplin
return X, g PIne

importance weights

|



An Example Problem



An Example Sensor Network
Problem

. Acoustic Direction of
@ One or more targets are moving Amplitude Arrival (DOA)

through a sensor field

@ The field contains networked | il
acoustic amplitude and bearing w
(DoA) sensors

@ Queries requesting information
about object tracks may be

injected at any node of the @
network

@ Queries may be about reporting
all objects detected, or focused
on only a subset of the objects.

Source




The TraC k| ng 1. Discovery: Node a detects the target and

initializes tracking
Sce n aI’I O 2. Query processing: User query Q enters the
net and is routed towards regions of interest
3. Collaborative Processing: Node a
estimates target location, with help from
neighboring nodes

Constraints:

* Node power reserves
* RF path loss

» Packet loss

O,
« Initialization cost / 4. Communication protocol: Node a may
... S \ hand data off to node b, bto ¢, ...
5. Reporting: Node d or f summarizes track
\ S data and send it back to the querying node

What if there are
- other (possibly)
_interfering targets?

What if there are
obstacles?

S
Bearing s nsors (eg.

PIR, bear nformeé@

Range sensors (eg.
Omni-microphone)



Tracking Scenario

@ Query must be
routed to the
node best able to
answer it




Tracking Scenario




Tracking Scenario




Tracking Scenario




Tracking Scenario

@ Sensor a
senses the
location of the
target and
chooses the
next best
sensor




Tracking Scenario
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Tracking Scenario




Tracking Scenario

@ Sensor d both
chooses the
next best
sensor and
also sends a
reply to the
query node




Tracking Scenario




Tracking Scenario

@ Sensor floses
the target and
sends the final
response back
to the query
node




Key Issues

@ How is a target detected? How do we suppress multiple
simultaneous discoveries?

@ How do nodes from collaboration groups to better jointly
track the target(s)? How do these groups need to evolve
as the targets move?

@ How are different targets differentiated and their
identities maintained?

@ What information needs to be communicated to allow
collaborative information processing within each group,
as well as the maintenance of these groups under target
motion?

@ How are queries routed towards the region of interest?

@ How are results from multiple parts of the network
accumulated and reported?



Formulation

@ Discretetime t=0, 1, 2 ...

@ K sensors; )\f characteristics of the i-th sensor
at time t

@ Ntargets; X; state of target i at time t; X' is the
collective state of all the targets; state of a target
IS Its position in the x-y plane

@ Measurement of sensor i attimetis Z Collectlve
measurements from all sensors together are 7'

{ { .
@ Z. and Z denote the respective measurement
histories over time



Sensing Model

@ Back to estimation theory

Z.t — h(xt, )\it) measurement function

=H (A)Xx +w

l

9 Assume time-invariant sensor
characteristics

@ Use only acoustic amplitude sensors

T a.
__ 2 __ i |
A _[ i’ai} & T Ix —C I - W
X =6



Collaborative Single Target
Localization

@ Three distance measurements o
are needed to localize a point O
in the plane (because of
ambiguities)

@ Linearization of quadratic
distance equations

(i
Serisor |

IxIP +0¢ P —2x7¢ =21, i=1,2,3,... 2.
<
r 11 ) )
—2(G,—=¢) x=a;| ——— =G 1T =1 17)
Z,  Z

c/x=d. subtract equation 1 from equation i

l



Least Squares Estimation

@ Since the state x has two components, three
measurements are needed to obtain two equations

@ More measurements lead to an over-determined system
-- which can yield more robust estimates via standard
least squares techniques

Cx=d (x-1Dx22x1=(EK-1xl

X = d Least-squares solution

(c"c) T




Bayesian State Estimation
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Distributed State Estimation

@ Observations z are naturally distributed among
the sensors that make them

@ But which node(s) should hold the state x? Even
In the single target case (N=1), this is not clear...

all nodes hold the
state

o O 00000 O
%;%%%%i? O 0000 O. O
Q‘igx???/g Doomoo./l
o330, O og—@—o O 0 0 0 O G
G_.{}_}D_’?} 0«0 O O O /:EED

£
o—@—ro—r--—o«—o—ai—o o o o%e AN
<0 65 6 b B 5B
j?é) éz é;i O 00000 O O
a single fixed node a variable node holds

holds the state the state (the leader)



Many, Many Questions and Trade-
Offs

@ How are leader nodes to be initially selected,
and how are they handed off?

@ What if a leader node fails?

@ How should the distribution of the target state (=
position) be represented? parametrically
(Gaussian) or non-parametrically (particles)?

Best-possible state estimation,

under constraints . . Communication,

Delay,
Power




IDSQ:
Information-Driven
Sensor Querying



IDSQ: Information-Driven
Sensor Querying

Localize a target using multiple acoustic amplitude
Sensors

Challenge

« Select next sensor to query to
maximize information return while
minimizing latency & bandwidth
consumption

Ideas

« Use information utility measures

* E.g. Mahalanobis distance, volume of error
covariance ellipsoid

*Incrementally query and combine
sensor data




Tracking Multiple Objects

@ New issues arise when tracking multiple
iInteracting targets
@ The dimensionality of the state space increases —
this can cause an exponential increase in complexity
(e.g., In a particle representation)
@ The distribution of state representation becomes
more challenging
@ One leader per target?

@ What if targets come near and they mix (data
association problem)?



State Space Decomposition

@ For well-separated targets, we
can factorize the joint state
space of the N targets into its

marginals

@ Such a factorization is not
possible when targets pass
near each other

@ Another factorization is
between target locations and

identities

@ the former require frequent
local communication

@ the latter less frequent global
communication

Target A

Single-
target
tracking !

{a)

hultitarget
tracking in
joint space

al

T ldentity

I managemesrit
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Data Association

@ Data association methods attribute specific
measurements to specific targets, before applying
estimation techniques

@ Even when there is no signal mixing, the space of possible
associations is exponential: N//K! possible associations (N = # of
targets, K= # of sensors)

@ Signal mixing makes this even worse: 2VX possible associations

@ Traditional data association methods are designed for
centralized settings
@ Multiple Hypothesis Tracking (MHT)
@ Joint Probabilistic Data Association (JPDA)

@ Network delays may cause measurements to arrive out
of order in the nodes where the corresponding state is
being held, complicating sequential estimation



Conclusion

@ An appropriate state representation is
crucial

aDifferent representations may be needed at
different times

@ T'he distribution of state raises many
challenges

Q@ Information utility:

@Directs sensing to find more valuable
information

@Balances cost of power consumption and
benefit of information acquisition



The End



