
Data Storage in Sensor Data Storage in Sensor
NetworksNetworks

Leonidas Guibas
Stanford University

Sensing Networking

Computation

CS428CS428

Sensor Systems as DBs

Sensor networks:
collect measurements from the physical world
organize and store these measurements over
time
serve continuous or single shot queries about
current or past events

So sensor networks can be though of as
distributed databases over these physical
measurements

Logical vs. Physical Data Access

A sensor net DB organization allows
queries to be expressed at a level close to
the application semantics – just like in a
traditional DB
This allows the system to hide physical
layer details, like where the data is stored,
replication for robustness, and so on ...
Of course, this increased convenience
comes at a loss of efficiency

Traditional SN Programs

Procedural addressing
of individual sensor
nodes; user specifies
how task is executed;
data may be processed
centrally.

DB Approach

Declarative querying;
user isolated from “how
the network works”;
in-network distributed
processing.

The DB View of Sensor Networks

Temperature
Time Value
2:00 15
4:00 12Temperature

Time Value
2:00 10
4:00 13

Humidity
Time Value
2:30 70
3:30 75

Temperature
Time Value
2:00 20
3:00 18

Pressure
Time Value
1:00 30
4:00 35

Queries

Database Approaches
for Accessing Sensor Networks

Warehousing approach
Device data is extracted in a
predefined way
Device data is stored in a
centralized DB server
Queries are evaluated on the
centralized DB server

Distributed approach
Queries are evaluated by
contacting devices
Portions of queries are executed
on the devices

Event
Data

Event
Data

Data-Centric Storage (DCS)

Data-Centric: data is named by attributes
Event data is stored, by name, at home
nodes; home nodes are selected by the
named attributes
Queries also go to the home nodes to
retrieve the data (instead of to the nodes
that detected the events)
Home nodes are determined by a hash
function + GPSR

Database Organization
Overview

What is a (Traditional) Database?

Very large, integrated collection of data
[Usually] Models real-world enterprises

Entities (e.g., students, courses)
Relationships (e.g., John is taking CS428)

A DataBase Management System
(DBMS) is a software package designed
to store and manage databases

Many common examples, such as SQL,
Oracle, etc.

Why Use a DBMS (instead of just
Files)?

Data independence and efficient access
Reduced application development time
Data integrity and security
Uniform data administration
[Consistent] Concurrent access,
recovery from crashes

Data Models
A data model is a collection of concepts for
describing data
A schema is a description of a particular
collection of data, using a given data model
The relational data model is the most widely
used model today

Main concept: relation, basically a table
with rows and columns
Every relation has a schema, which
describes its columns (fields)

Levels of Abstraction
Many views, single
conceptual (logical)
schema and physical
schema

Views describe how
users see the data
Conceptual schema
defines logical
structure
Physical schema
describes files and
indexes used

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Example: a University Database

Conceptual schema:
Students(sid:string, name:string,

login:string, age:integer, gpa:real)
Courses(cid:string, cname:string,

credits:integer)
Enrolled(sid:string, cid:string, grade:string)

Physical schema:
Relations stored as unordered files
Index on first column of Students

Example: University Database

External Schema (View):
Course_info(cid:string,enrollment:integer)

Data Independence

Applications insulated from how data is
structured and stored
Logical data independence: Protection
from changes in logical structure of data
Physical data independence: Protection
from changes in physical organization and
format of data

Concurrency Control
Concurrent execution of user programs is
essential for good DBMS performance

Because disk accesses are frequent, and
relatively slow, it is important to keep the CPU
working on several user programs concurrently

Interleaving actions of different user programs
can lead to inconsistency: e.g., check is cleared
while account balance is being computed
DBMS ensures such problems don’t arise: users
can pretend they are using a single-user system

In sensor networks the network plays the role of the disks ...

Execution of a DBMS Program

Key concept is transaction, which is an
atomic sequence of database actions
(reads/writes)
Each transaction, executed completely,
must leave the DB in a consistent state
(assuming DB is consistent when the
transaction begins)

Scheduling Concurrent
Transactions

DBMS ensures that execution of {T1, ... , Tn} is
equivalent to some serial execution T1’ ... Tn’ (in
some order, not necessarily the order in which
initiated)
Two-phase locking: Before reading/writing an
object, a transaction requests a lock on the object,
and waits till the DBMS gives it the lock

Deadlock

Say an action of Ti (say, writing X) affects Tj
(which perhaps reads X). One of them, say
Ti, will obtain the lock on X first, so Tj is
forced to wait until Ti completes (this
effectively orders the transactions)
But what if Tj already has a lock on Y and Ti
later requests a lock on Y?
Ti or Tj must be aborted and restarted!

Ensuring Atomicity
DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a
transaction
Keeps a log (history) of all actions carried out by
transactions while executing:

Before a change is made to the database, the
corresponding log entry is forced to a safe
location (Write-Ahead Log protocol - OS
support for this is often inadequate)
After a crash, the effects of partially executed
transactions are undone (recovery) using the log

Structure of a DBMS
A typical DBMS
has a layered
architecture
Diagram shows
one of several
possible
architectures; each
system has its own
variations

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery

Summary
DBMS used to maintain, query large datasets
Benefits include recovery from system crashes,
concurrent access, quick application
development, data integrity and security
Levels of abstraction give data independence
A DBMS typically has a layered architecture

But all these operations assume fast processing
and inexpensive storage

Some Recent Trends

Distributed Databases: information may be
stored on remote disks, accessed via a
network
P2P systems: A network of nodes that
come and go, sharing files (Napster,
Gnutella, Kazaa)
Data streams: Large data streams that
cannot be stored; data summaries must be
maintained to serve queries

Sensor Network
DataBases

Sensor Network DB Challenges

These days disks used in DB systems are
essentially free; sensor nodes instead
have to deal with pitifully small memories –
so data summarization, aggregation, and
aging is essential
In a sensor network links (and nodes)
come and go – the stored information and
access to it must be protected from this
physical volatility

Challenges, Cont’d

Continuous, rather than single shot
queries, will be the norm – thus query
optimization is important for saving energy
Latencies in access to data can be highly
variable; thus query execution plans must
continuously adapt to the network state
Query executions can interact and cause
conflicts and resource contention in sensor
tasking

An Example

Many A detections,
little correlation with B

Roughly the same A and B
detections, highly correlated

The Data is Different, Too

Sensor net data inherently contains errors –
exact data comparisons are of little value
A distinction has to be made between data that
could potentially be acquired, and data that
actually has been acquired – resource
contention and other issues could prevent the
capture of potential data
The relational view of large tables whose entries
can be modified is not realistic; may need to
work with append-only relations

What Should
Queries be Like?

SQL-Like Query Examples
Snapshot (single shot) queries:
� How many empty bird nests are in the northeastern

quadrant of the forest?
SELECT SUM(s)
FROM SensorData s
WHERE s.nest = empty and s.loc in (50,50,100,100)

Long-running (continuous) queries:
� Notify me over the next hour whenever the number of

empty nests in an area exceeds a threshold.
SELECT s.area, SUM(s)
FROM SensorData s
WHERE s.nest = empty
GROUP BY s.area
HAVING SUM(s) > T
DURATION (now, now+60)
EVERY 5

What is New?

Duration for continuous queries
Sampling rates
New data types, to account for data
uncertainty

ranges
parametric distributions (e.g., Gaussians)

operations for computing probabilities, equality
likelihood, ...

Using Distributions Instead of
Values

Properly reflects the uncertainty in all
sensor measurements
Answers computed by the sensor net can
be given a confidence
But even simple arithmetic operations can
become very costly

A Sensor Database
Example:

TinyDB from UC Berkeley
[Madden, Franklin, Hellerstein, Hong, ’03]

Using Declarative Queries

Users specify the data they want
Simple, intuitive, SQL-like queries
Using user predicates, not specific node addresses

Challenge is to provide:
Expressive and easy-to-use DB interface
High-level operators

With well-defined interactions
With transparent optimizations that many programmers would miss

Sensor-net specific techniques

Power efficient execution framework

TinyDB

Programming sensor nets is hard
Declarative queries are easy

TinyDB: In-network processing via declarative
queries

Example:
Vehicle tracking application

Custom code
1-2 weeks to develop
Hundreds of lines of C

TinyDB query (on right):
2 minutes to develop
Comparable functionality

���������	
�	
�� � ��
������
� � ���� ��������
��
��� �� �� � � ��� � � !� �

[Madden et. al., ’03]

TinyDB Interface

Overview

TinyDB: Queries for Sensor Nets
Processing Aggregate Queries (TAG)
Taxonomy and Experiments
Acquisitional Query Processing

���"� �

�#�
� �

$%
�"����#
����

� %&����'
�
�(��)

���"� * �� �#���
#�%�

�#�
� �+
,-����&��. �/�#�� � ��	��0 �
�����1%�
�

����������� 	
���

�
��23�
� '45

 ��������� ��

� ������
� �����
 � � ���� ��

� � � �
�����
	
���

 ������
�!"#
 � � !
$$%
�!$#
 � � !
$%�

��1&
� ��� '&
� ���23�
� '45

� ��
+��
� '
���
������� '&
+�67�%�
����������� '&
+�87�%9
��&�1���������1&
+�&
� ����+��
�:��
�����+�± 6��
���
;
��/ +�getTempFunc()<

�
��
� '�%�#�
��
� '�%�#22<<55

���"� *���"� *

=>7?777����
���� 1
		
	������	

=6?777����
��2��@��	
5�9 �A�

=BC77�*"�
��� � �2(D�E F�1"�
��
�'5

=6F�)* �#�� '�&
	�#�	

2BG�&���
�������C�	 &���
������"� ��������� 5

Declarative Queries for Sensor
Networks

Examples:
SELECT nodeid, nestNo, light
FROM sensors
WHERE light > 400
EPOCH DURATION 1s

1

2

1

2

1

NodeidNodeid

405251

422171

389250

455170

LightLightnestNonestNoEpochEpoch
Sensors

-���	���
��
���������1������
�
���:.

Aggregation Queries

3

3

3

3

CNT(…)

520

370

520

360

AVG(…)

South0

North1

South1

North

region

0

Epoch

-��%�����
��%� 1
���##%'�
	�
�
�������
�#��&�%	��
������/�
��
���&��	:.

������ �
����?���� �2�##%'�
	5�
� H; 2��%�	5

�� � �
�����

; � � ��*I �
����

� � H�� ; � H; 2��%�	5���C77

��� �� �� � � ��� � >7�

3

������(D�� H; 2��%�	5���C77

������ � H; 2��%�	5

�� � �
�����

��� �� �� � � ��� � >7�

2

Tiny Aggregation (TAG)

In-network processing of aggregates
Common data analysis operation

Aka gather operation or reduction in || programming

Communication reduction
Operator dependent benefit

Across nodes during same epoch

Exploit query semantics to improve efficiency!

Query Propagation Via Tree-
Based Routing

Tree-based routing
Used in:

Query delivery
Data collection

Topology selection is
important;
Continuous process

Mitigates failures

A

B C

D

F
E

$+�������<

$ $

$

$$

$

$

$

$

$ $$

+J<K

+J<K

+J<K

+J<K +J<K

Basic Aggregation

In each epoch (= system sampling period):
Each node samples local sensors once
Generates partial state record (PSR)

own local readings
readings from children

Outputs PSR during assigned communication
interval

At end of epoch, PSR for whole network
output at root
New result at each successive epoch

Extras:
Predicate-based partitioning via GROUP BY

1

2 3

4

5

Illustration: Aggregation

1

2

3

14

4

54321

1

2 3

4

5

>

�
�����L

�
��

�A
�&
�L

���
�A�&�!
� �����
�' () ��*�

� ' +
��,�-��

�'�#�

Illustration: Aggregation

1

2

23

14

4

54321

1

2 3

4

5

C

�
�����L

���
�A�&�B
� �����
�' () ��*�

� ' +
��,�-��

�
��

�A
�&
�L

Illustration: Aggregation

1

312

23

14

4

54321

1

2 3

4

5

B>

�
�����L

���
�A�&�C
� �����
�' () ��*�

� ' +
��,�-��

�
��

�A
�&
�L

Illustration: Aggregation

51

312

23

14

4

54321

1

2 3

4

5

6

�
�����L

� �����
�' () ��*�

� ' +
��,�-�� ���
�A�&�>

�
��

�A
�&
�L

Illustration: Aggregation

51

312

23

14

14

54321

1

2 3

4

5

>

�
�����L

� �����
�' () ��*�

� ' +
��,�-�� ���
�A�&�!

�
��

�A
�&
�L

Interval Assignment: An Approach

1

2 3

4

5

� �����
� �����

�' () ��*��' () ��*�..!����
�A�&��D�
'�#�

���
�A�&�L �M��
A
&

4

3

Level = 1

2

Epoch

��� � ���
�A�&

4 3 2 1 555

�

�
�

�

�
��

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

L T

L T

L T

T

L T

L L
/�����,�,�+���#�
��
�����%��'%��1"�	
&�"����
�
�%&������A�&�%���&���&��
��
'�#�

, �� +
0-�
1-�����-,

��-�2�,1�

,��� �
�,�������
0-�

�-3 ��
1-,�������-,

, + �,4
�������-,�

,��� �
� 4,1

Aggregation Framework

, � �����
G�
���1&
�	���1��
�?����"� * �%''�������"�
����
�������/%�#�����#��/��� ������+
����������	
��� ��
�������	�

����	����� → ����

�� �� �����
������→ �����

������	 ������� → ������	�����

�G�� '&
+�� A
���

������	 ���� → ��
��

������ ����
����
����
����� → ���� ����
��� �����

��������	���
����� → ���

������&�����
�
#��	�2��5

����#����+��
��
�����#����A
?�#�� � %����A

Types of Aggregates

SQL supports MIN, MAX, SUM, COUNT,
AVERAGE

Any function over a set can be computed via
TAG

In network benefit for many operations
E.g. Standard deviation, top/bottom n, spatial
union/intersection, histograms, etc.
Compactness of PSR

Partial State

Growth of PSR vs. number of aggregated values (n)
Algebraic: |PSR| = 1 (e.g. MIN)
Distributive: |PSR| = c (e.g. AVG)
Holistic: |PSR| = n (e.g. MEDIAN)
Unique: |PSR| = d (e.g. COUNT DISTINCT)

d = # of distinct values
Content Sensitive: |PSR| < n (e.g. HISTOGRAM)

Effectiveness of TAGMEDIAN : unbounded,
MAX : 1 record

Partial State
AffectsExamplesProperty

-� �����%1
.?�
; ��"�
�:��&

Simulation Environment

Evaluated TAG via simulation

Coarse grained event based simulator
Sensors arranged on a grid
Two communication models

Lossless: All neighbors hear all messages
Lossy: Messages lost with probability that increases with
distance

Communication (message counts) as
performance metric

Benefit of In-Network
Processing

Simulation Results

2500 Nodes

50x50 Grid

Depth = ~10

Neighbors = ~20

Uniform Dist.

����&�*"�
��N � ���
	�A�:�� ���
��������%�#����

7

>7777

C7777

B7777

!7777

67777

 7777

E7777

F7777

87777

>77777

�N �� � � � � � N � H� � ; � � ����� �� � �� �� �

 ��������-,
��,1��-,

�
-�
�
�

5
4
��

�

6
�
��
��

2

, ��������
7
2����

2���,2�,�
8�,�0��9

� �&����#� �&����#
� ��O%
� ��O%

� �����1%��A
� �����1%��A

� &�
1���#� &�
1���#

Optimization: Channel Sharing
(“Snooping”)

Insight: Shared channel can reduce communication

Suppress messages that won’t affect aggregate
E.g., MAX
Applies to all exemplary, monotonic aggregates

Only snoop in listen/transmit slots
Future work: explore snooping/listening tradeoffs

Optimization: Hypothesis
Testing

Insight: Guess from root can be used for
suppression

E.g. ‘MIN < 50’
Works for monotonic & exemplary aggregates

Also summary, if imprecision allowed

How is hypothesis computed?
Blind or statistically informed guess
Observation over network subset

Experiment: Snooping vs.
Hypothesis Testing

Uniform Value
Distribution

Dense
Packing

Ideal
Communication

�����������	
����������
�����������

������������������� �������!�"#�$##%�

�

���

����

����

����

����

����

�� �� �� �� ��

����
�����������

�
�
�
�
�
�
�
�
��
��
	

�
�

��	
��

��	�	��

��	�	��

��������

��%��������
�
�(��)

��%��������
�
�A
�

Duplicate Sensitivity

Hypothesis Testing, SnoopingCOUNT : monotonic
AVG : non-monotonic

Monotonicity

Routing RedundancyMIN : dup. insensitive,
AVG : dup. sensitive

Duplicate
Sensitivity

Applicability of Sampling,
Effect of Loss

MAX : exemplary
COUNT: summary

Exemplary vs.
Summary

Effectiveness of TAGMEDIAN : unbounded,
MAX : 1 record

Partial State
AffectsExamplesProperty

Use Multiple Parents

Use graph structure
Increase delivery probability with no communication overhead

For duplicate insensitive aggregates, or
Aggs expressible as sum of parts

Send (part of) aggregate to all parents
In just one message, via multicast

Assuming independence, decreases variance

��������� � � �2P5

A

B C

R

A

B C

c

R

�2&��)�G� �� �%##
��/%&5�M�'

�2�%##
���/��� �� @�5�M�'C

�2#��5�M�#�P�'C

H��2#��5�M�#C P�'C P�2>�Q 'C5�
≡ H

L ��/�'��
����M��

�2#��5�M���P�2#D��P�'C5

H��2#��5�M���P�2#D�5C P�
'C P�2>�Q 'C5��M�HD� A

B C

c/n c/n

R

n = 2

TAG Contributions

Simple but powerful data collection language
Vehicle tracking:

SELECT ONEMAX(mag,nodeid)
EPOCH DURATION 50ms

Distributed algorithm for in-network aggregation
Communication Reducing
Power Aware

Integration of sleeping, computation
Predicate-based grouping

Taxonomy driven API
Enables transparent application of techniques to

Improve quality (parent splitting)
Reduce communication (snooping, hypo. testing)

Acquisitional Query Processing
(ACQP)

Closed world assumption does not hold
Could generate an infinite number of samples

An acqusitional query processor controls
when,

where,

and with what frequency data is collected!

Versus traditional systems where data is provided a priori

ACQP: What is Different?

How should the query be processed?
Sampling as a first class operation
Event – join duality

How does the user control acquisition?
Rates or lifetimes
Event-based triggers

Which nodes have relevant data?
Index-like data structures

Which samples should be transmitted?
Prioritization, summary, and rate control

Event-Based Processing

ACQP – want to initiate queries in
response to events

� � ��H�� � 1��	@
��
�2<5

������ 1:#��R>

�� � 1��	��� � 1

� � ��� ���� �� 1

� � ��

:,;,��3 -�<
��-����

� �8=�1�
�-

-���� �>���-,

��� ���*� ��� 1��	�2%���> �#��5

��S � >�

More Events
ON EVENT bird_detect(loc) AS bd

SELECT AVG(s.light), AVG(s.temp)

FROM sensors AS s

WHERE dist(bd.loc,s.loc) < 10m

SAMPLE PERIOD 1s for 10

Event Based Processing

, �2��� '&����� ��5�����2��� '&����&����5
>677�%9 �A�:�87�%9

Operator Ordering: Interleave Sampling +
Selection

SELECT light, mag
FROM sensors
WHERE pred1(mag)
AND pred2(light)
EPOCH DURATION 1s

σσσσ2'�
	>
5

σσσσ2'�
	C5

� ��

&����

σσσσ2'�
	>
5

σσσσ2'�
	C5

� ��

&����

σσσσ2'�
	>
5

σσσσ2'�
	C5

� �� &����

���2���-,��
? 5+ �

� �$�

At 1 sample / sec, total power savings
could be as much as 3.5mW ����
Comparable to processor!

Correct orderingCorrect ordering
(unless pred1 is (unless pred1 is very very selective selective

and pred2 is not):and pred2 is not):

��
�'

����&"

Exemplary Aggregate
Pushdown

SELECT WINMAX(light,8s,8s)
FROM sensors
WHERE mag > x
EPOCH DURATION 1s

, � �A
&?��
�
��&�
'%��	�(��
�
#���O%

, � �� ��� '&�������
��
�� ����

G'
���A
�
�'
������T

γγγγ� �� � � N

σσσσ2� ���G5

� �� &����

���2���-,��
? 5+ �

&����

� ��

σσσσ2� ���G5

γγγγ� �� � � N

σσσσ2&�������� � N 5

� �$�

Sensor Network Challenge DB
Problems

Temporal aggregates

Sophisticated, sensor
network specific aggregates

Isobar Finding
Vehicle Tracking
Lossy compression

Wavelets
-���1������	���.

TinyDB Deployments

Initial efforts:
Network monitoring
Vehicle tracking

Ongoing deployments:
Environmental monitoring
Generic Sensor Kit
Building Monitoring
Golden Gate Bridge

Summary

Declarative queries are the right interface for
data collection in sensor nets!

Easier, faster, & more robust

Acquisitional Query Processing
Framework for addresses many new issues that arise
in sensor networks, e.g.

Order of sampling and selection
Languages, indices, approximations that give user control
over which data enters the system

Multi-Dimensional
Range Searching

Range Queries

Range queries ask for attribute readings
with data values in certain ranges, e.g.,
temperature T � [-15 C, +15 C]
They are well-suited to data with
uncertainty, such as sensor readings
Usually multiple attributes are involved
Typically, the number of records satisfying
the query is small compared to the total
number of records

Data-Base Indices

When repeated queries are made on the
same data, it makes sense to preprocess
the database so as to make the query
processing faster
The auxiliary structures we build to
facilitate this processing are called indices
A large body of literature exists on building
indices for one-dimensional attributes

Metrics for Evaluating Indices

For a data base of n records, the relevant
metrics are

the index size, S(n)
the preprocessing time required to build the
index, P(n)
the query cost the index enables, Q(n)
the update cost to allow for record insertions
and deletions to the database, U(n)

Distributed Range Searching

All structures we saw so far are
hierarchical – in a distributed setting nodes
that hold data close to the root are likely to
be overloaded
We discuss one sensor network range
searching approaches

The DIMENSIONS system from UCLA

Some Issues to Consider

How is information aggregated spatially
and temporally?
How does the system decide where to
store information?
How are queries routed to the correct
nodes?
What steps does the system take to
reduce energy use?

/
'
�

�
�
�
:
�
�
�
@

�
�

DIMENSIONS System: Key Ideas

Construct distributed load-
balanced quad-tree hierarchy
of lossy wavelet-compressed
summaries corresponding to
different resolutions and
spatio-temporal scales.

Queries drill-down from root of
hierarchy to focus search on
small portions of the network.

Progressively age summaries
for long-term storage and
graceful degradation of query
quality over time.

�������

�������

�������

/
'
�

�
�
�
:
�
�
�
@

�
'
�
�
@

	

[From Ganesan, et., al., 2003]

Constructing the Hierarchy

Initially, nodes fill up their own storage with raw
sampled data.

Constructing the Hierarchy

Tesselate the network space into a grid; use hashing in each
cell to determine location of clusterhead (ref: DCS).
Send wavelet-compressed local time-series to clusterhead.

Processing at Each Level

x

tim
e

y

	

�������������
��������������
���������

�����
�����������������
��������������������
���������

�������������
��������������� �
�����������������

Wavelet encoder/decoder

Constructing the Hierarchy

Recursively send data to higher levels of the
hierarchy.

Distributing the Storage Load

Hash to different locations over time to distribute load
among nodes in the network.

Eventually, all available storage gets filled, and
we have to decide when and how to drop
summaries.

Allocate storage to each resolution and use
each allocated storage block as a circular buffer.

���������	�
�����������

Res 1Res 2Res 3Res 4

Local storage capacity

What Happens when Storage
Fills Up?

Graceful Query
Degradation: Provide
more accurate responses
to queries on recent data
and less accurate
responses to queries on
older data.

Tradeoff Between Age and Storage
Requirements for Summary

�������

�������

�������

!��� �����������

�
�
�
	�
��
�
�
�
	�
�
�

�
�����	������	���

���������������

�������	������	���

�
�������������
��

����

"���
�������������������������������������� �����������
����������������������#���� $

Match system performance to user
requirements

Objective: Minimize worst case difference between user-
desired query quality (green curve) and query quality that
the system can provide (red step function).

�����������	����

���

�
�
�
	�
��
�
�
�
	�
�
�

�����������

%���������������������&�'���������
�������������������(��� �(����� �
��������������������

� ���������������������������&�
QQsystemsystem, , with steps at times when with steps at times when
summaries are aged.summaries are aged.

iAge

95%

50%

What Do We Know?

Given
N sensor nodes.
Each node has storage capacity, S.
Data is generated at resolution i at rate Ri.
Quser - User-desired quality degradation.

We might be provided
a set of typical queries, T, that the user provides.
D(q,k) – Query Error when drilldown for query q
terminates at level k.

Determining Query Quality from
Multiple Queries

Error

50%

5%

Edge Query: Find nodes
along a boundary between
high and low precipitation
areas.

Max Query: Find the node
which has the maximum
precipitation in January.

We need to translate the performance of different drill-
down queries to a single “query quality” metric.

Only coarsest summary
is queried.

All resolutions (from coarsest
to finest) are queried

Definition: Query Quality

Given:
T = set of typical queries.
D(q,k) = Query error when drill-down for query q in
set T terminates at resolution k.

The query quality for queries that refer to data
at time t in the past, Qsystem(t), if k is the finest
available resolution is:

∑
∈

=
Tq

),(
|T|

1
)(kqDt

system
Q

How Many Levels of Resolution k
Are Available at Time t ?

Given:
Ri = Total transmitted data rate from level i
clusterheads to level i+1 clusterheads.

Define si = storage allocated at each node for
summaries of resolution i.

Level i

i

i
i R

Ns
Age =Level i+1

Storage Allocation: Constraint-
Optimization problem

Objective: Find {si}, i=1..log4N
that:

Given constraints:
Storage constraint: Each node
cannot store any greater than its
storage limit.
Drill-down constraint: It is not
useful to store finer resolution
data if coarser resolutions of the
same data is not present.

)()(
 ..0- t

max min tQtQ systemuser −
∞=

Ss
N

i
i ≤∑

=

4log

1

ii AgeAge ≥+1

Determining Rates and Drilldown
Query Errors

iR
How do we determine How do we determine
communication rates to bound communication rates to bound
query error?query error?

How do we determine the drillHow do we determine the drill--
down query error when prior down query error when prior
information about deployment information about deployment
and data is limited?and data is limited?

),(kqD

Assume: Rates are fixed aAssume: Rates are fixed a--priori by priori by
communication constraints.communication constraints.

Solve Constraint
Optimization

Prior information about sampled
data

Omniscient Strategy
Baseline. Use all data to
decide optimal allocation.

Training Strategy
(can be used when small
training dataset from initial
deployment).

Greedy Strategy
(when no data is available,
use a simple weighted
allocation to summaries).

Coarse Finer Finest

1 : 2 : 4

No a priori information

full a priori information

Distributed Trace-Driven
Implementation

Linux implementation for ipaq-class nodes
uses Emstar (J. Elson et al), a Linux-based
emulator/simulator for sensor networks.
3D Wavelet codec based on freeware by Geoff Davis
available at: http://www.geoffdavis.net.
Query processing in Matlab.

Geo-spatial precipitation dataset
15x12 grid (50km edge) of precipitation data from 1949-1994,
from Pacific Northwest†. (Caveat: Not real sensor data).

System parameters
compression ratio: 6:12:24:48.
Training set: 6% of total dataset.

)*��+����������,�-����������.��/��������������� ���������������������
0�������1�������&��232�23�

How Efficient is The Search?

Search is very efficient (<5% of network queried)
and accurate for different queries studied.

Comparing Aging Strategies

Training performs within 1% to optimal . Careful selection
of parameters for the greedy algorithm can provide
surprisingly good results (within 2-5% of optimal).

Conclusion

Range searching in an important capability for
sensor networks
To allow efficient query processing, data
aggregation over space and time is required
Many methods employ hierarchical structures
New communication problems arise in how to
avoid overloading nodes high in the hierarchy
Limited node memory implies that data ageing
issues have to be addressed

The End

