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Sensor Systems as DBs

Sensor networks:
collect measurements from the physical world
organize and store these measurements over 
time
serve continuous or single shot queries about 
current or past events

So sensor networks can be though of as 
distributed databases over these physical 
measurements



Logical vs. Physical Data Access

A sensor net DB organization allows 
queries to be expressed at a level close to 
the application semantics – just like in a 
traditional DB
This allows the system to hide physical 
layer details, like where the data is stored, 
replication for robustness, and so on ...
Of course, this increased convenience 
comes at a loss of efficiency



Traditional SN Programs

Procedural addressing
of individual sensor 
nodes; user specifies 
how task is executed; 
data may be processed 
centrally.

DB Approach

Declarative querying;   
user isolated from “how 
the network works”;        
in-network distributed 
processing.

The DB View of Sensor Networks
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Database Approaches 
for Accessing Sensor Networks

Warehousing approach
Device data is extracted in a 
predefined way
Device data is stored in a 
centralized DB server
Queries are evaluated on the 
centralized DB server

Distributed approach
Queries are evaluated by 
contacting devices
Portions of queries are executed 
on the devices

Event
Data

Event
Data



Data-Centric Storage (DCS)

Data-Centric: data is named by attributes
Event data is stored, by name, at home 
nodes; home nodes are selected by the 
named attributes
Queries also go to the home nodes to 
retrieve the data (instead of to the nodes 
that detected the events)
Home nodes are determined by a hash 
function + GPSR



Database Organization
Overview



What is a (Traditional) Database?

Very large, integrated collection of data
[Usually] Models real-world enterprises

Entities (e.g., students, courses)
Relationships (e.g., John is taking CS428)

A DataBase Management System 
(DBMS) is a software package designed 
to store and manage databases

Many common examples, such as SQL, 
Oracle, etc.



Why Use a DBMS (instead of just 
Files)?

Data independence and efficient access
Reduced application development time
Data integrity and security
Uniform data administration
[Consistent] Concurrent access, 
recovery from crashes



Data Models
A data model is a collection of concepts for 
describing data
A schema is a description of a particular 
collection of data, using a given data model
The relational data model is the most widely 
used model today

Main concept: relation, basically a table 
with rows and columns
Every relation has a schema, which 
describes its columns (fields)



Levels of Abstraction
Many views, single 
conceptual (logical) 
schema and physical 
schema

Views describe how 
users see the data                                        
Conceptual schema 
defines logical 
structure
Physical schema 
describes files and 
indexes used

Physical Schema

Conceptual Schema

View 1 View 2 View 3



Example: a University Database

Conceptual schema:                  
Students(sid:string, name:string, 

login:string, age:integer, gpa:real)
Courses(cid:string, cname:string, 

credits:integer) 
Enrolled(sid:string, cid:string, grade:string)

Physical schema:
Relations stored as unordered files 
Index on first column of Students



Example: University Database

External Schema (View): 
Course_info(cid:string,enrollment:integer)



Data Independence

Applications insulated from how data is 
structured and stored
Logical data independence:  Protection 
from changes in logical structure of data
Physical data independence:   Protection 
from changes in physical organization and 
format of data



Concurrency Control
Concurrent execution of user programs is 
essential for good DBMS performance

Because disk accesses are frequent, and 
relatively slow, it is important to keep the CPU 
working on several user programs concurrently

Interleaving actions of different user programs 
can lead to inconsistency: e.g., check is cleared 
while account balance is being computed
DBMS ensures such problems don’t arise: users 
can pretend they are using a single-user system

In sensor networks the network plays the role of the disks ... 



Execution of a DBMS Program

Key concept is transaction, which is an 
atomic sequence of database actions 
(reads/writes)
Each transaction, executed completely, 
must leave the DB in a consistent state
(assuming DB is consistent when the 
transaction begins)



Scheduling Concurrent 
Transactions

DBMS ensures that execution of {T1, ... , Tn} is 
equivalent to some serial execution T1’ ... Tn’ (in 
some order, not necessarily the order in which 
initiated)
Two-phase locking: Before reading/writing an 
object, a transaction requests a lock on the object, 
and waits till the DBMS gives it the lock



Deadlock

Say an action of Ti (say, writing X) affects Tj
(which perhaps reads X). One of them, say 
Ti, will obtain the lock on X first, so Tj is 
forced to wait until Ti completes (this 
effectively orders the transactions)
But what if Tj already has a lock on Y and Ti
later requests a lock on Y? 
Ti or Tj must be aborted and restarted! 



Ensuring Atomicity
DBMS ensures atomicity (all-or-nothing property) 
even if system crashes in the middle of a 
transaction
Keeps a log (history) of all actions carried out by 
transactions while executing:

Before a change is made to the database, the 
corresponding log entry is forced to a safe 
location  (Write-Ahead Log protocol - OS 
support for this is often inadequate)
After a crash, the effects of partially executed 
transactions are undone (recovery) using the log



Structure of a DBMS
A typical DBMS 
has a layered 
architecture
Diagram shows 
one of several 
possible 
architectures; each 
system has its own 
variations

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery



Summary
DBMS used to maintain, query large datasets
Benefits include recovery from system crashes, 
concurrent access, quick application 
development, data integrity and security
Levels of abstraction give data independence
A DBMS typically has a layered architecture

But all these operations assume fast processing 
and inexpensive storage



Some Recent Trends

Distributed Databases: information may be 
stored on remote disks, accessed via a 
network
P2P systems: A network of nodes that 
come and go, sharing files (Napster, 
Gnutella, Kazaa)
Data streams: Large data streams that 
cannot be stored; data summaries must be 
maintained to serve queries



Sensor Network
DataBases



Sensor Network DB Challenges

These days disks used in DB systems are 
essentially free; sensor nodes instead 
have to deal with pitifully small memories –
so data summarization, aggregation, and 
aging is essential
In a sensor network links (and nodes) 
come and go – the stored information and 
access to it must be protected from this 
physical volatility



Challenges, Cont’d

Continuous, rather than single shot 
queries, will be the norm – thus query 
optimization is important for saving energy
Latencies in access to data can be highly 
variable; thus query execution plans must 
continuously adapt to the network state
Query executions can interact and cause 
conflicts and resource contention in sensor 
tasking



An Example

Many A detections,
little correlation with B

Roughly the same A and B
detections, highly correlated



The Data is Different, Too

Sensor net data inherently contains errors –
exact data comparisons are of little value
A distinction has to be made between data that 
could potentially be acquired, and data that 
actually has been acquired – resource 
contention and other issues could prevent the 
capture of potential data
The relational view of large tables whose entries 
can be modified is not realistic; may need to 
work with append-only relations



What Should
Queries be Like?



SQL-Like Query Examples
Snapshot (single shot) queries:
� How many empty bird nests are in the northeastern

quadrant of the forest?
SELECT SUM(s)
FROM SensorData s
WHERE s.nest = empty and  s.loc in (50,50,100,100)

Long-running (continuous) queries:
� Notify me over the next hour whenever the number of 

empty nests in an area exceeds a threshold.
SELECT s.area, SUM(s)
FROM SensorData s
WHERE s.nest = empty
GROUP BY s.area
HAVING SUM(s) > T
DURATION (now, now+60)
EVERY 5



What is New?

Duration for continuous queries
Sampling rates
New data types, to account for data 
uncertainty

ranges
parametric distributions (e.g., Gaussians)

operations for computing probabilities, equality 
likelihood, ...



Using Distributions Instead of 
Values

Properly reflects the uncertainty in all 
sensor measurements
Answers computed by the sensor net can 
be given a confidence
But even simple arithmetic operations can 
become very costly



A Sensor Database
Example:

TinyDB from UC Berkeley
[Madden, Franklin, Hellerstein, Hong, ’03]



Using Declarative Queries

Users specify the data they want
Simple, intuitive, SQL-like queries
Using user predicates, not specific node addresses

Challenge is to provide:
Expressive and easy-to-use DB interface
High-level operators

With well-defined interactions
With transparent optimizations that many programmers would miss

Sensor-net specific techniques

Power efficient execution framework



TinyDB

Programming sensor nets is hard
Declarative queries are easy

TinyDB: In-network processing via declarative 
queries

Example:  
Vehicle tracking application

Custom code
1-2 weeks to develop
Hundreds of lines of C

TinyDB query (on right): 
2 minutes to develop
Comparable functionality

���������	
�	
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[Madden et. al., ’03]



TinyDB Interface



Overview

TinyDB: Queries for Sensor Nets
Processing Aggregate Queries (TAG)
Taxonomy and Experiments
Acquisitional Query Processing 
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Declarative Queries for Sensor 
Networks

Examples:
SELECT nodeid, nestNo, light
FROM sensors
WHERE light > 400
EPOCH DURATION 1s

1

2

1

2

1

NodeidNodeid

405251

422171

389250

455170

LightLightnestNonestNoEpochEpoch
Sensors
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Aggregation Queries
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Tiny Aggregation (TAG)

In-network processing of aggregates
Common data analysis operation

Aka gather operation or reduction in || programming

Communication reduction
Operator dependent benefit

Across nodes during same epoch

Exploit query semantics to improve efficiency!



Query Propagation Via Tree-
Based Routing

Tree-based routing
Used in:

Query delivery 
Data collection

Topology selection is 
important; 
Continuous process

Mitigates failures
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Basic Aggregation

In each epoch (= system sampling period):
Each node samples local sensors once
Generates partial state record (PSR)

own local readings 
readings from children 

Outputs PSR during assigned communication 
interval

At end of epoch, PSR for whole network 
output at root
New result at each successive epoch

Extras:
Predicate-based partitioning via GROUP BY

1

2 3

4

5



Illustration: Aggregation
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Illustration: Aggregation
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Illustration: Aggregation
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Illustration: Aggregation
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Illustration: Aggregation
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Interval Assignment: An Approach
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Aggregation Framework
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Types of Aggregates

SQL supports MIN, MAX, SUM, COUNT, 
AVERAGE

Any function over a set can be computed via 
TAG

In network benefit for many operations
E.g. Standard deviation, top/bottom n, spatial 
union/intersection, histograms, etc. 
Compactness of PSR



Partial State

Growth of PSR vs. number of aggregated values (n) 
Algebraic:  |PSR| = 1 (e.g. MIN)
Distributive:  |PSR| = c (e.g. AVG)
Holistic:  |PSR| = n (e.g. MEDIAN)
Unique:  |PSR| = d  (e.g. COUNT DISTINCT)

d = # of distinct values
Content Sensitive:  |PSR| < n (e.g. HISTOGRAM)

Effectiveness of TAGMEDIAN : unbounded,
MAX : 1 record

Partial State
AffectsExamplesProperty
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Simulation Environment

Evaluated TAG via simulation

Coarse grained event based simulator
Sensors arranged on a grid
Two communication models

Lossless:  All neighbors hear all messages
Lossy: Messages lost with probability that increases with 
distance

Communication (message counts) as 
performance metric



Benefit of In-Network 
Processing

Simulation Results

2500 Nodes

50x50 Grid

Depth = ~10

Neighbors = ~20

Uniform Dist.
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Optimization: Channel Sharing 
(“Snooping”)

Insight:  Shared channel can reduce communication

Suppress messages that won’t affect aggregate
E.g., MAX
Applies to all exemplary, monotonic aggregates 

Only snoop in listen/transmit slots
Future work:  explore snooping/listening tradeoffs



Optimization: Hypothesis 
Testing

Insight:  Guess from root can be used for 
suppression

E.g. ‘MIN < 50’
Works for monotonic & exemplary aggregates

Also summary,  if imprecision allowed

How is hypothesis computed?
Blind or statistically informed guess
Observation over network subset



Experiment: Snooping vs. 
Hypothesis Testing

Uniform Value 
Distribution

Dense 
Packing 

Ideal 
Communication
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Duplicate Sensitivity

Hypothesis Testing, SnoopingCOUNT : monotonic
AVG : non-monotonic

Monotonicity

Routing RedundancyMIN : dup. insensitive,
AVG : dup. sensitive

Duplicate 
Sensitivity

Applicability of Sampling, 
Effect of Loss

MAX : exemplary
COUNT: summary

Exemplary vs. 
Summary

Effectiveness of TAGMEDIAN : unbounded, 
MAX : 1 record

Partial State
AffectsExamplesProperty



Use Multiple Parents

Use graph structure 
Increase delivery probability with no communication overhead

For duplicate insensitive aggregates, or
Aggs expressible as sum of parts

Send (part of) aggregate to all parents
In just one message, via multicast

Assuming independence, decreases variance
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TAG Contributions

Simple but powerful data collection language
Vehicle tracking:  

SELECT ONEMAX(mag,nodeid)
EPOCH DURATION 50ms

Distributed algorithm for in-network aggregation
Communication Reducing
Power Aware

Integration of sleeping, computation
Predicate-based grouping

Taxonomy driven API 
Enables transparent application of techniques to

Improve quality (parent splitting)
Reduce communication (snooping, hypo. testing)



Acquisitional Query Processing 
(ACQP)

Closed world assumption does not hold
Could generate an infinite number of samples

An acqusitional query processor controls 
when, 

where, 

and with what frequency data  is collected!

Versus traditional systems where data is provided a priori



ACQP: What is Different?

How should the query be processed?
Sampling as a first class operation
Event – join duality

How does the user control acquisition?
Rates or lifetimes
Event-based triggers

Which nodes have relevant data?
Index-like data structures

Which samples should be transmitted?
Prioritization, summary, and rate control



Event-Based Processing

ACQP – want to initiate queries in 
response to events
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More Events
ON EVENT bird_detect(loc) AS bd

SELECT AVG(s.light), AVG(s.temp)

FROM sensors AS s

WHERE dist(bd.loc,s.loc) < 10m

SAMPLE PERIOD 1s for 10



Event Based Processing
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Operator Ordering: Interleave Sampling + 
Selection

SELECT light, mag
FROM sensors
WHERE pred1(mag)
AND pred2(light)
EPOCH DURATION 1s
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At 1 sample / sec, total power savings 
could be as much as 3.5mW ����
Comparable to processor!

Correct orderingCorrect ordering
(unless pred1 is (unless pred1 is very very selective selective 

and pred2 is not):and pred2 is not):
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Exemplary Aggregate 
Pushdown

SELECT WINMAX(light,8s,8s)
FROM sensors
WHERE mag > x
EPOCH DURATION 1s
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Sensor Network Challenge DB 
Problems

Temporal aggregates

Sophisticated, sensor 
network specific aggregates

Isobar Finding
Vehicle Tracking
Lossy compression

Wavelets
-���1������	���.



TinyDB Deployments

Initial efforts:
Network monitoring
Vehicle tracking

Ongoing deployments:
Environmental monitoring 
Generic Sensor Kit
Building Monitoring
Golden Gate Bridge 



Summary

Declarative queries are the right interface for 
data collection in sensor nets!

Easier, faster, & more robust

Acquisitional Query Processing 
Framework for addresses many new issues that arise 
in sensor networks, e.g.

Order of sampling and selection
Languages, indices, approximations that give user control 
over which data enters the system



Multi-Dimensional
Range Searching



Range Queries

Range queries ask for attribute readings 
with data values in certain ranges, e.g., 
temperature T � [-15 C, +15 C]
They are well-suited to data with 
uncertainty, such as sensor readings
Usually multiple attributes are involved
Typically, the number of records satisfying 
the query is small compared to the total 
number of records



Data-Base Indices

When repeated queries are made on the 
same data, it makes sense to preprocess 
the database so as to make the query 
processing faster
The auxiliary structures we build to 
facilitate this processing are called indices
A large body of literature exists on building 
indices for one-dimensional attributes



Metrics for Evaluating Indices

For a data base of n records, the relevant 
metrics are

the index size, S(n)
the preprocessing time required to build the 
index, P(n)
the query cost the index enables, Q(n)
the update cost to allow for record insertions 
and deletions to the database, U(n)



Distributed Range Searching

All structures we saw so far are 
hierarchical – in a distributed setting nodes 
that hold data close to the root are likely to 
be overloaded
We discuss one sensor network range 
searching approaches

The DIMENSIONS system from UCLA



Some Issues to Consider

How is information aggregated spatially 
and temporally?
How does the system decide where to 
store information?
How are queries routed to the correct 
nodes?
What steps does the system take to 
reduce energy use?
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DIMENSIONS System: Key Ideas

Construct distributed load-
balanced quad-tree hierarchy 
of lossy wavelet-compressed
summaries corresponding to 
different resolutions and 
spatio-temporal scales.

Queries drill-down from root of 
hierarchy to focus search on 
small portions of the network.

Progressively age summaries 
for long-term storage and 
graceful degradation of query 
quality over time.
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[From Ganesan, et., al., 2003]



Constructing the Hierarchy

Initially, nodes fill up their own storage with raw 
sampled data.



Constructing the Hierarchy

Tesselate the network space into a grid; use hashing in each 
cell to determine location of clusterhead (ref: DCS).
Send wavelet-compressed local time-series to clusterhead.



Processing at Each Level
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Wavelet encoder/decoder



Constructing the Hierarchy

Recursively send data to higher levels of the 
hierarchy.



Distributing the Storage Load

Hash to different locations over time to distribute load 
among nodes in the network.



Eventually, all available storage gets filled, and 
we have to decide when and how to drop 
summaries.

Allocate storage to each resolution and use 
each allocated storage block as a circular buffer.
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Res 1Res 2Res 3Res 4

Local storage capacity

What Happens when Storage 
Fills Up?



Graceful Query 
Degradation: Provide 
more accurate responses 
to queries on recent data 
and less accurate 
responses to queries on 
older data.

Tradeoff Between Age and Storage 
Requirements for Summary
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Match system performance to user 
requirements

Objective: Minimize worst case difference between user-
desired query quality (green curve) and query quality that 
the system can provide (red step function).
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summaries are aged.summaries are aged.

iAge

95%

50%



What Do We Know?

Given
N sensor nodes.
Each node has storage capacity, S.
Data is generated at resolution i at rate Ri.
Quser - User-desired quality degradation.

We might be provided
a set of typical queries, T, that the user provides.
D(q,k) – Query Error when drilldown for query q
terminates at level k.



Determining Query Quality from 
Multiple Queries

Error

50%

5%

Edge Query: Find nodes 
along a boundary between 
high and low precipitation 
areas.

Max Query: Find the node 
which has the maximum 
precipitation in January.

We need to translate the performance of different drill-
down queries to a single “query quality” metric.

Only coarsest summary
is queried.

All resolutions (from coarsest 
to finest) are queried



Definition: Query Quality

Given:
T = set of typical queries.
D(q,k) = Query error when drill-down for query q in 
set T terminates at resolution k.

The query quality for queries that refer to data 
at time t in the past, Qsystem(t), if k is the finest 
available resolution is:
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How Many Levels of Resolution k
Are Available at Time t ?

Given:
Ri = Total transmitted data rate from level i
clusterheads to level i+1 clusterheads.

Define si = storage allocated at each node for 
summaries of resolution i.

Level i

i

i
i R

Ns
Age =Level i+1



Storage Allocation: Constraint-
Optimization problem

Objective: Find {si}, i=1..log4N
that:

Given constraints:
Storage constraint: Each node 
cannot store any greater than its 
storage limit.
Drill-down constraint: It is not 
useful to store finer resolution 
data if coarser resolutions of the 
same data is not present.
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Determining Rates and Drilldown 
Query Errors

iR
How do we determine How do we determine 
communication rates to bound communication rates to bound 
query error?query error?

How do we determine the drillHow do we determine the drill--
down query error when prior down query error when prior 
information about deployment information about deployment 
and data is limited?and data is limited?

),( kqD

Assume: Rates are fixed aAssume: Rates are fixed a--priori by priori by 
communication constraints.communication constraints.



Solve Constraint
Optimization

Prior information about sampled 
data

Omniscient Strategy
Baseline. Use all data to 
decide optimal allocation.

Training Strategy
(can be used when small 
training dataset from initial 
deployment).

Greedy Strategy
(when no data is available, 
use a simple weighted 
allocation to summaries).

Coarse Finer Finest

1     :      2        :             4

No a priori information

full a priori information



Distributed Trace-Driven 
Implementation

Linux implementation for ipaq-class nodes 
uses Emstar (J. Elson et al), a Linux-based 
emulator/simulator for sensor networks.
3D Wavelet codec based on freeware by Geoff Davis 
available at: http://www.geoffdavis.net.
Query processing in Matlab.

Geo-spatial precipitation dataset
15x12 grid (50km edge) of precipitation data from 1949-1994, 
from Pacific Northwest†. (Caveat: Not real sensor data).

System parameters
compression ratio: 6:12:24:48.
Training set: 6% of total dataset.
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How Efficient is The Search?

Search is very efficient (<5% of network queried) 
and accurate for different queries studied.



Comparing Aging Strategies

Training performs within 1% to optimal . Careful selection 
of parameters for the greedy algorithm can provide 
surprisingly good results (within 2-5% of optimal).



Conclusion

Range searching in an important capability for 
sensor networks
To allow efficient query processing, data 
aggregation over space and time is required
Many methods employ hierarchical structures
New communication problems arise in how to 
avoid overloading nodes high in the hierarchy
Limited node memory implies that data ageing 
issues have to be addressed



The End


