

Presentation for CS428

-Mukund Sundararajan

Sensor Networks As Distributed Databases

Types of Queries in Sensor Networks

- Continuous queries v/s One shot.
 - Report temperature for next 7 days.
 - Is the current temperature >70?
- Aggregate v/s Non-aggregate.
 - Average temperature of region.
 - What is the temperature measured by node X?
- Complex v/s Simple.
 - What are the values of vars A,B,C?
 - What is the value of A.
- Replicated v/s Unique.
 - Is there atleast one node with temp>70?

Approach #1: Flood

- Query Processing in two phases
 - Sink floods several copies of the query
 - Relevant nodes reply with the answer
- Energy efficient if continuous query
 - First phase amortizes over many rounds
- Duplicate responses result in energy losses

Approach #2: Walk

- The query performs a guided or random walk in the n/w.
- Each node partially processes query.
- Query walks home when solved.
- Alternatively events may walk.
- Latency is an issue.

ACQUIRE

Published as:

- N. Sadagopan, B. Krishnamachari, A. Helmy, "<u>The ACQUIRE</u>
 <u>Mechanism for Efficient Querying in Sensor Networks</u>", First IEEE
 International Workshop on Sensor Network Protocols and
 Applications (<u>SNPA</u>), in conjunction with <u>IEEE ICC 2003</u>, pp. 149155, May 2003, Anchorage, AK, USA.
- ACtive QUery forwardIng in sensoR nEtworks.
- Simple 7 page paper.

Contributions.

- Query processing protocol : ACQUIRE.
- Modeling and analysis of energy consumption.
- Comparison with other protocols.

Central Idea

- Study trade-off between Walk and Flood approaches
- Use intelligent caching
- Good for one-shot, complex, replicated non-aggregated queries
 - Obtain sample calls for Blue-jays,
 Nightingale, Cardinal and Warbler

Data Tracking and Query Model

- \bullet Let $V = \{V_1, V_2, V_n\}$ be n variables.
- Let $Q = \{Q_1, Q_2, Q_m\}$ be the query.
- Each node keeps track of one variable with uniform random probability.
- Query is issued at node x*.
- Assumption that there is data replication: N/M nodes have partial answer to a query.

ACQUIRE Preliminaries

- Each active node maintains information about nodes within d hops.
- The number of such nodes is given by the n/w topology dependant function f(d).

ACQUIRE Mechanism

- A random walk is performed starting at x*.
- Current node may refresh data from neighbourhood.
- Query is resolved based on partial information
- The query is then forwarded to a random node at the edge of its neighbourhood

How Much Energy Is Consumed?

Energy is measured in terms of number of transmissions

Energy Analysis: Notation

- \bullet Let V={V₁, V₂.. V_n}be n variables.
- \bullet Let Q={Q₁, Q₂.. Q_m} be the query.
 - m<n, Q_i € V.
- S_m be the average number of steps.
- d is look-around of an active node.
- f(d) be the number of nodes within d hops.
- c is update frequency.

Energy Analysis Equation

$$E_{avg} = (cE_{update} + d)S_M + \alpha$$

(1)

- alpha is average distance to sink
- Note special cases
 - If d = Diameter then Flooding
 - If d= 0 then Random walk
- S_m reduces as d increases

Energy Analysis: Estimating Expected Number of Steps:S_m

- Suppose each node tracks a single V_i with equal probability
- Estimate number of hops with d=0. (Random Walk)
- Given a query Q, consider a trial which asks if a particular node can satisfy any variable in the query
- Success probability: M/N
- In a random walk, expected time to first success is N/M

Estimating S_m Contd...

$$E(\sigma_M) = N \sum_{i=1}^{M} \frac{1}{M - i + 1} = NH(M)$$
 (2)

$$E(\sigma_M) \approx N(\ln M + \gamma)$$
 (3)

$$S_M = \frac{E(\sigma_M)}{f(d)} \approx \frac{N(\ln M + \gamma)}{f(d)} \tag{4}$$

Increasing look-around reduces walk length

Estimating Energy for a Triggered Update

$$E_{update} = (f(d-1) + \sum_{i=1}^{d} iN(i))$$
 (5)

N(i) is the number of nodes at distance i.

Total Energy Consumed (in a Grid)

$$E_{avg} \approx \left\{ \frac{cN(\ln M + \gamma)}{3} \frac{4d^3 + 12d^2 - 4d + 3}{2d^2 + 2d + 1} + N(\ln M + \gamma) \frac{2d}{2d^2 + 2d + 1} \right\}$$
(9)

- N(i) = 4i for a grid (ignoring boundary)
- f(d) = 2d(d+1) +1
- Gamma is Euler constant
- To find the optimal d*, differentiate wrt d. and set to 0.

Energy Consumed.

d* is larger for smaller values of c

Performance of ACQUIRE

Flood Based Approach.

- Flood Query
- All nodes that track the variables respond
- Use the caching idea

$$E_{avg} = (f(R) + \sum_{i=1}^{R} iN_{avg}(i))c$$

$$= (f(R) + \frac{M}{N} \sum_{i=1}^{R} iN(i))c$$

- ◆ E_{avg} proportional to X^3/2
- X is the number of nodes in the n/w.

Expanding Ring Search

- ◆d=0 at Start.
- The query node x* tries to answer query Q using updates from nodes within distance d.
- If query is not satisfied, d is increased by 1.
- Use the caching idea.
- Similar equations, see paper.

Comparison

Expanding ring search

For this case, Acquire* outperforms ERS if d* <=1

Notes

- Efficiency can be improved by guiding trajectory
 - Reducing overlap
 - Guiding query towards regions of information
- Find value of the look-around d based on the amortization factor c; this factor is application dependant
- Nodes could take turns being active

Take Home Message

- Query processing in sensor n/w depends on:
 - Nature of query
 - Data Replication impacts efficacy of walks
 - Rate of change of data values impacts efficacy of caching
 - Topology of the network

ONE SIZE DOES NOT FIT ALL!