B-MAC

Tunable MAC protocol for wireless networks

Summary of paper "Versatile Low Power Media Access for Wireless Sensor Networks"

Presented by Kyle Heath

Outline

- Introduction to B-MAC
- Design of B-MAC
- B-MAC components
- Evaluation of B-MAC
- Summary

Introduction to B-MAC

- B-MAC = Berkley Media Access Control
- A simple carrier sense media access protocol
 - Link-access protocol only
- Exposes parameters to higher network layers
 - Tunable media access instead of a "black box"

B-MAC Design Objectives

- Principles
 - Reconfigurable MAC protocol
 - Flexible control
 - Hooks for sub-primitives
 - Backoff/Timeouts
 - Duty Cycle
 - Acknowledgements
 - Feedback to higher protocols
 - Minimal implementation
 - Minimal state

- Primary Goals
 - Low Power Operation
 - Effective Collision Avoidance
 - Simple/Predicable Operation
 - Small Code Size
 - Tolerant to Changing RF/Networking Conditions
 - Scalable to Large Number of Nodes

B-MAC Features

- Reconfiguration and control of link layer protocol parameters
 - Acknowledgements, Backoff/Timeouts, Power Management, Hidden Terminal Management (RTS/CTS)
- Ability to choose tradeoffs "knobs"
 - Fairness, Latency, Energy Consumption, Reliability
- Power consumption estimation through analytical and empirical models
 - Feedback to network protocols
 - Lifetime estimation
- Mechanisms to achieve network protocols' goals

Other MAC protocols

• S-MAC

Ye, Heidemann, and Estrin, INFOCOM 2002

- Synchronized protocol with periodic listen periods
- "Black Box" design
 - Designed for a general set of workloads
 - User sets radio duty cycle
 - SMAC takes care of the rest so you don't have to
 - Integrates higher layer functionality into link protocol

• T-MAC

van Dam and Langendoen, Sensys 2003

 Reduces power consumption by returning to sleep if no traffic is detected at the beginning of a listen period

B-MAC Components

- Channel arbitration
 - Clear Channel Assessment (CCA)
 - back offs
- Reliability
 - Link layer acknowledgements
- Power efficient communication
 - Low Power Listening (LPL)

Note: services like organization, synchronization, and routing are left to higher levels.

Clear Channel Assessment

Automatic estimation of noise floor

Simple threshold reduces throughput

If no outliers after 5 samples, channel is considered busy

Figure 2: Clear Channel Assessment (CCA) effectiveness for a typical wireless channel. The top graph is a trace of the received signal strength indicator (RSSI) from a CC1000 transceiver. A packet arrives between 22 and 54ms. The middle graph shows the output of a thresholding CCA algorithm. 1 indicates the channel is clear, 0 indicates it is busy. The bottom graph shows the output of an outlier detection algorithm.

Clear Channel Assessment

- Configurable "knobs"
 - Enable/Disable CCA
 - Configure initial and congestion back off times
- Adjusts protocol's
 - Fairness
 - Available throughput

(g)

sleep

[(d)] (e) [(f)]

adc

2.5

3

uc rx

(c)

radio crystal startup

1.5

Time (ms)

2

Low Power Listening (LPL)

Effect of LPL Check Interval

- Single hop data reporting application
- Higher sampling rate
 - Higher traffic in a cell
 - Higher duty cycle
- Optimize the check time to the traffic
 - Application knows sample rate (packet generation rate)

Implementation Size

- Higher level service built on top of B-MAC in order to compare with S-MAC
 - Reliable transport (Acks)
 - Hidden Terminal support (RTS-CTS)
- Implementation smaller than S-MAC

Protocol	ROM	RAM
B-MAC	3046	166
B-MAC w/ ACK	3340	168
B-MAC w/ LPL	4092	170
B-MAC w/ LPL & ACK	4386	172
B-MAC w/ LPL & ACK + RTS-CTS	4616	277
S-MAC	6274	516

Table 1: A comparison of the size of B-MAC and S-MAC inbytes. Both protocols are implemented in TinyOS.

Tradeoffs: Latency for Energy Factored vs Traditional Protocol

- Assume a multihop packet is generated every 10 sec
 - No queuing delay allowed
- Delay the packet
 - S-MAC sleeps longer between listen period
 - B-MAC increases the check interval and preamble length

Tradeoffs: Throughput for Energy Factored vs Layered Protocol

- 10 node single hop network
 - Increase transmission rate
 - Deliver each packet within 10 sec
 - Measure average power consumption per node
- As throughput increases
 - B-MAC reduces check interval as traffic increases
 - S-MAC uses optimal duty cycle
 - Protocol overhead causes energy to increase linearly

Notation Parameter Sample Rate (packets/sec) r Neighborhood size п L_{preamble} Preamble length (bytes) Packet length (bytes) L_{packet} Current : Sleep (mA) c_{sleep} Current : Rx one byte c_{rxb} Current : Tx one byte c_{txb} C_{batt} Capacity : Battery (mAh) V Voltage Time : Radio sampling interval (s) t_i t_{startup} Time : Radio startup Time : Rx one byte \mathbf{t}_{rxb} Time : Rx per second \mathbf{t}_{rx} Time : Tx one byte \mathbf{t}_{txb} Time : Tx per second \mathbf{t}_{tx} Time : Lifetime (s) \mathbf{t}_l

Lifetime Model

 $\min(E) = E_{rx} + E_{tx} + E_{listen} + E_{sleep}$ • Transmit

$$t_{tx} = r \times (L_{preamble} + L_{packet})t_{txb}$$
$$E_{tx} = t_{tx}c_{txb}V$$

• Receive

$$t_{rx} \leq nr \times (L_{preamble} + L_{packet})t_{rxb}$$
$$E_{rx} = t_{rx}c_{rxb}V$$

Notation	Parameter
r	Sample Rate (packets/sec)
n	Neighborhood size
L _{preamble}	Preamble length (bytes)
L _{packet}	Packet length (bytes)
C _{sleep}	Current : Sleep (mA)
c _{rxb}	Current : Rx one byte
C _{txb}	Current : Tx one byte
C _{batt}	Capacity : Battery (mAh)
V	Voltage
t _i	Time : Radio sampling interval (s)
t _{startup}	Time : Radio startup
t _{rxb}	Time : Rx one byte
t _{rx}	Time : Rx per second
t _{txb}	Time : Tx one byte
t _{tx}	Time : Tx per second
t _l	Time : Lifetime (s)

Lifetime Model $\min(E) = E_{rx} + E_{tx} + E_{listen} + E_{sleep}$ • LPL Sampling

$$E_{sample} = 17.3 \mu J$$

$$E_{listen} \le E_{sample} \times \frac{1}{t_i}$$

Sleep

$$t_{listen} = t_{startup} \times \frac{1}{t_i}$$

$$t_{sleep} = 1 - t_{rx} - t_{tx} - t_{listen}$$

1

$$E_{sleep} = t_{sleep} \times c_{sleep}$$

Lifetime Model $min(E) = E_{rx} + E_{tx} + E_{listen} + E_{sleep}$

• The total energy, *E*, can be used to calculate the expected lifetime of the system

$$t_l = \frac{C_{batt} \times V}{E} \times 60 \times 60$$

Notation	Parameter
r	Sample Rate (packets/sec)
п	Neighborhood size
L _{preamble}	Preamble length (bytes)
L _{packet}	Packet length (bytes)
C _{sleep}	Current : Sleep (mA)
c _{rxb}	Current : Rx one byte
c _{txb}	Current : Tx one byte
C _{batt}	Capacity : Battery (mAh)
V	Voltage
t _i	Time : Radio sampling interval (s)
t _{startup}	Time : Radio startup
t _{rxb}	Time : Rx one byte
t _{rx}	Time : Rx per second
t _{txb}	Time : Tx one byte
t _{tx}	Time : Tx per second
t _l	Time : Lifetime (s)

Effect of Neighborhood Size

- Neighborhood Size affects amount of traffic in a cell
 - Network protocols typically keep track of neighborhood size
 - Bigger Neighborhood \rightarrow More traffic

Conclusions

- Coordination with higher protocols is essential for long lived operation
- Traditional abstraction at the network layer doesn't fit sensor networks—need a new abstraction at the link layer like B-MAC