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Introduction to B-MAC

� B-MAC = Berkley Media Access Control
� A simple carrier sense media access protocol

� Link-access protocol only

� Exposes parameters to higher network layers
� Tunable media access instead of a “black box”



B-MAC Design Objectives

� Principles
� Reconfigurable MAC 

protocol
� Flexible control 
� Hooks for sub-primitives

� Backoff/Timeouts
� Duty Cycle
� Acknowledgements

� Feedback to higher 
protocols

� Minimal implementation
� Minimal state

� Primary Goals
� Low Power Operation
� Effective Collision Avoidance
� Simple/Predicable Operation
� Small Code Size
� Tolerant to Changing 

RF/Networking Conditions
� Scalable to Large Number of 

Nodes



B-MAC Features
� Reconfiguration and control of link layer protocol parameters

� Acknowledgements, Backoff/Timeouts, Power Management, 
Hidden Terminal Management (RTS/CTS)

� Ability to choose tradeoffs – “knobs”
� Fairness, Latency, Energy Consumption, Reliability

� Power consumption estimation through analytical and empirical 
models
� Feedback to network protocols
� Lifetime estimation

� Mechanisms to achieve network protocols’ goals



Other MAC protocols

� S-MAC
Ye, Heidemann, and Estrin, INFOCOM 2002

� Synchronized protocol with periodic 
listen periods

� “Black Box” design
� Designed for a general set of 

workloads
� User sets radio duty cycle
� SMAC takes care of the rest so 

you don’t have to
� Integrates higher layer 

functionality into link protocol

� T-MAC
van Dam and Langendoen, Sensys 2003

� Reduces power consumption by 
returning to sleep if no traffic is 
detected at the beginning of a 
listen period
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B-MAC Components

� Channel arbitration
� Clear Channel Assessment (CCA)
� back offs

� Reliability
� Link layer acknowledgements

� Power efficient communication
� Low Power Listening (LPL)

Note: services like organization, synchronization, and 
routing are left to higher levels.



Clear Channel Assessment

If no outliers after 5 
samples, channel is 
considered busy

Automatic estimation of 
noise floor

Simple threshold reduces 
throughput



Clear Channel Assessment

� Configurable “knobs”
� Enable/Disable CCA
� Configure initial and congestion back off times

� Adjusts protocol’s
� Fairness
� Available throughput



Low Power Listening (LPL)
� Higher level communication scheduling

� Energy Cost = RX + TX + Listen
� Start by minimizing the listen cost

� Example of a typical low level 
protocol mechanism

� Periodically 
� wake up, sample channel, sleep

� Properties
� Wakeup time fixed
� “Check Time” between wakeups 

variable
� Preamble length matches 

wakeup interval
� Overhear all data packets in cell

� Duty cycle depends on number 
of neighbors and cell traffic
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� Single hop data 
reporting application

� Higher sampling rate
� Higher traffic in a cell
� Higher duty cycle

� Optimize the check 
time to the traffic
� Application knows 

sample rate (packet 
generation rate)



Implementation Size

� Higher level service built on top of B-MAC in order to compare with S-
MAC
� Reliable transport (Acks)
� Hidden Terminal support (RTS-CTS)

� Implementation smaller than S-MAC



Fragmentation Support
Factored vs Layered Protocol

� S-MAC
� RTS-CTS Fragmentation Support

� B-MAC
� Network protocol sends initial data packet with 

number of fragments pending
� Disable backoff & LPL for rest of fragments

� Measure energy 
consumption at C
(bottleneck node)

� Minimizing power relies
on controlling link layer 
primitives
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Tradeoffs: Latency for Energy
Factored vs Traditional Protocol

� Assume a multihop
packet is generated 
every 10 sec
� No queuing delay 

allowed

� Delay the packet
� S-MAC sleeps longer 

between listen period
� B-MAC increases the 

check interval and 
preamble length

S-MAC Default Configuration

B-MAC Default Configuration
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Tradeoffs: Throughput for Energy
Factored vs Layered Protocol

� 10 node single hop network
� Increase transmission rate
� Deliver each packet within 

10 sec
� Measure average power 

consumption per node
� As throughput increases

� B-MAC reduces check 
interval as traffic increases

� S-MAC uses optimal duty 
cycle 
� Protocol overhead causes 

energy to increase linearly
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Lifetime Model

� Transmit

� Receive
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Lifetime Model

� LPL Sampling

� Sleep
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Lifetime Model

� The total energy, E, can be 
used to calculate the 
expected lifetime of the 
system
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Effect of Neighborhood Size
� Neighborhood Size affects amount of traffic in a cell

� Network protocols typically keep track of neighborhood 
size

� Bigger Neighborhood � More traffic
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Conclusions

� Coordination with higher protocols is essential 
for long lived operation

� Traditional abstraction at the network layer 
doesn’t fit sensor networks—need a new 
abstraction at the link layer like B-MAC


