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ABabcdfghiejkl’Naive’ use of a Sensor Network

Sensor Network≡ Pure Data Collection Device

individual nodes gather low-level data and send it to central
instance for storage, processing, interpretation
huge amounts of data induce communication bottlenecks
energy required to transfer data enormous, even if no
ongoing queries
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ABabcdfghiejkl’Less Naive’ use of a Sensor Network

Sensor Network≡ Data Collection and Storage Device

each sensor stores its collected data locally
a query is flooded to all nodes of the network, nodes with
matching information answer
no effort when no queries
bad if a lot of queries arrive
Possible: data aggregation/pruning while answering query
. . . still bad for many queries
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ABabcdfghiejklData Centric Storage (1)

define a map f : Event Type → Network Location
store all occurrences of an event at location defined by f
e.g. all ’elephant sightings’ are stored at node
f (elephant sighting)

well chosen hash function f ⇒ load is well distributed for
many different event types
query for ’elephant sightings’ only needs to inquire at
location f (elephant sightings)
examples: GHT + extensions
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ABabcdfghiejklData Centric Storage (2)

load problem when many events of same type are occuring
⇒ create ’well-spread’ set of locations responsible for one
data type
event is always stored at closest of these locations

Upon query: check all responsible locations
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ABabcdfghiejklData Centric Storage (3)

DCS developed for discrete events (’elephant sightings’)
Problem with continous attributes like ’temperature’, ’time’
e.g. ’elephant sightings between 7pm and 9pm’; probably
only few ’elephant’ locations actually have matching data,
still all have to be inspected
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ABabcdfghiejklA quadtree-based approach

use hierarchical decomp.,
e.g. Quadtree
define for each event type
and square a unique
responsible location
responsible location knows
histogram of event times of
resp. locs. of its children
query starts at root and only
descends into subtrees
where histogram indicates
matches
Problem: high load on re-
sponsible root node
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ABabcdfghiejklDIFS: Relieving the Root node

1st Idea: hash not only by event type and square but also
by time range to a particular node, i.e.
f : Square×Type×Time Range → Location
if time is [0,255], we could hash f (s,eleph,0), f (s,eleph,1),. . .
in the lowest level of the Quadtree where there are a lot of
squares, we’d get 255 as many resp. locations!
2nd Idea: while the relevant region for a resp. location
shrinks when going down the tree, we want the range to
increase
at level 0 hash only with (ES, [0,255]),
at level 1 hash for (ES, [0,63]), (ES, [64,127]), (ES, [128,191]),
(ES, [192,255])

. . .
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ABabcdfghiejklDIFS: Event registration / Queries

Registration:
(ES,155) is stored at f (cell,ES,(0,255))

f (cell,ES,(0,255)) updates its histogram and sends the
changed part (128,191) to f (par(cell),ES,(128,191))

Query: all ES in (47,68)

decompose into (47,47),(48,63),(64,67), (68,68) (essentially
log |range| pieces)
inspect all responsible locations determined by ES and
decomposed ranges
Queries do not always start at a root node !

CS 428 May 25, 2005 – p.9/14



ABabcdfghiejklExperimental Evaluation

1024m × 1024m area
2048 nodes with comm. radius of 25m (sparse)
generated 2048 events at random locations
Uniform: scalar value random
HotSpot: inversely proportional to distance to closest of 5
’hot spots’
For comparison: simple DCS, QuadTree, Directed Diffusion
Not clear: Quadtree/DIFS refined to bottom ?
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ABabcdfghiejklQuery Costs

Pruning not very effective for uniform case
for small ranges and non-uniform case QT and DIFS good
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ABabcdfghiejklStorage Communication Costs

Registration order of magnitude worse than for DCS
No update intervals for QT ??
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ABabcdfghiejklBottleneck nodes during queries

load on individual nodes much lower for DIFS
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ABabcdfghiejklSummary

#queries ≤ # events, uncorrelated events, or storage
limitations ⇒ standard DCS
# queries À # events and correlated events make additional
in-network organization worthwhile ⇒ QT/DIFS
if balancing load over network nodes is important ⇒ DIFS
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