
ABabcdfghiejkl

DIFS: A Distributed Index for
Features in Sensor Networks

B. Greenstein, D. Estrin, R. Govindan,
S. Ratnasamy, S. Shenker

WSNA 2003

CS 428 May 25, 2005 – p.1/14

ABabcdfghiejkl’Naive’ use of a Sensor Network

Sensor Network≡ Pure Data Collection Device

individual nodes gather low-level data and send it to central
instance for storage, processing, interpretation
huge amounts of data induce communication bottlenecks
energy required to transfer data enormous, even if no
ongoing queries

CS 428 May 25, 2005 – p.2/14

ABabcdfghiejkl’Less Naive’ use of a Sensor Network

Sensor Network≡ Data Collection and Storage Device

each sensor stores its collected data locally
a query is flooded to all nodes of the network, nodes with
matching information answer
no effort when no queries
bad if a lot of queries arrive
Possible: data aggregation/pruning while answering query
. . . still bad for many queries

CS 428 May 25, 2005 – p.3/14

ABabcdfghiejklData Centric Storage (1)

define a map f : Event Type → Network Location
store all occurrences of an event at location defined by f
e.g. all ’elephant sightings’ are stored at node
f (elephant sighting)

well chosen hash function f ⇒ load is well distributed for
many different event types
query for ’elephant sightings’ only needs to inquire at
location f (elephant sightings)
examples: GHT + extensions

CS 428 May 25, 2005 – p.4/14

ABabcdfghiejklData Centric Storage (2)

load problem when many events of same type are occuring
⇒ create ’well-spread’ set of locations responsible for one
data type
event is always stored at closest of these locations

Upon query: check all responsible locations

CS 428 May 25, 2005 – p.5/14

ABabcdfghiejklData Centric Storage (3)

DCS developed for discrete events (’elephant sightings’)
Problem with continous attributes like ’temperature’, ’time’
e.g. ’elephant sightings between 7pm and 9pm’; probably
only few ’elephant’ locations actually have matching data,
still all have to be inspected

CS 428 May 25, 2005 – p.6/14

ABabcdfghiejklA quadtree-based approach

use hierarchical decomp.,
e.g. Quadtree
define for each event type
and square a unique
responsible location
responsible location knows
histogram of event times of
resp. locs. of its children
query starts at root and only
descends into subtrees
where histogram indicates
matches
Problem: high load on re-
sponsible root node

CS 428 May 25, 2005 – p.7/14

ABabcdfghiejklDIFS: Relieving the Root node

1st Idea: hash not only by event type and square but also
by time range to a particular node, i.e.
f : Square×Type×Time Range → Location
if time is [0,255], we could hash f (s,eleph,0), f (s,eleph,1),. . .
in the lowest level of the Quadtree where there are a lot of
squares, we’d get 255 as many resp. locations!
2nd Idea: while the relevant region for a resp. location
shrinks when going down the tree, we want the range to
increase
at level 0 hash only with (ES, [0,255]),
at level 1 hash for (ES, [0,63]), (ES, [64,127]), (ES, [128,191]),
(ES, [192,255])

. . .

CS 428 May 25, 2005 – p.8/14

ABabcdfghiejklDIFS: Event registration / Queries

Registration:
(ES,155) is stored at f (cell,ES,(0,255))

f (cell,ES,(0,255)) updates its histogram and sends the
changed part (128,191) to f (par(cell),ES,(128,191))

Query: all ES in (47,68)

decompose into (47,47),(48,63),(64,67), (68,68) (essentially
log |range| pieces)
inspect all responsible locations determined by ES and
decomposed ranges
Queries do not always start at a root node !

CS 428 May 25, 2005 – p.9/14

ABabcdfghiejklExperimental Evaluation

1024m × 1024m area
2048 nodes with comm. radius of 25m (sparse)
generated 2048 events at random locations
Uniform: scalar value random
HotSpot: inversely proportional to distance to closest of 5
’hot spots’
For comparison: simple DCS, QuadTree, Directed Diffusion
Not clear: Quadtree/DIFS refined to bottom ?

CS 428 May 25, 2005 – p.10/14

ABabcdfghiejklQuery Costs

Pruning not very effective for uniform case
for small ranges and non-uniform case QT and DIFS good

CS 428 May 25, 2005 – p.11/14

ABabcdfghiejklStorage Communication Costs

Registration order of magnitude worse than for DCS
No update intervals for QT ??

CS 428 May 25, 2005 – p.12/14

ABabcdfghiejklBottleneck nodes during queries

load on individual nodes much lower for DIFS

CS 428 May 25, 2005 – p.13/14

ABabcdfghiejklSummary

#queries ≤ # events, uncorrelated events, or storage
limitations ⇒ standard DCS
queries À # events and correlated events make additional
in-network organization worthwhile ⇒ QT/DIFS
if balancing load over network nodes is important ⇒ DIFS

CS 428 May 25, 2005 – p.14/14

	
	'Naive' use of a Sensor Network
	'Less Naive' use of a Sensor Network
	Data Centric Storage (1)
	Data Centric Storage (2)
	Data Centric Storage (3)
	A quadtree-based approach
	DIFS: Relieving the Root node
	DIFS: Event registration / Queries
	Experimental Evaluation
	Query Costs
	Storage Communication Costs
	Bottleneck nodes during queries
	Summary

