WiseNET

(Or, how to make a sensor net node that lasts as long as your battery's shelf life)

Motivation

- Goal: sensor network hardware that can run for 2-5 years off a single 1.5V AA alkaline battery.
- This means average power less than 10-100 $\mu W.$
- Typical commercial radio transceivers require > 10mW

Outline

- WiseMAC Protocol
 Optimized for low duty cycle operation
- Optimized Radio Transceiver – Low power
- System On Chip design

Communication Power Consumption

- How to communicate when nodes sleep most of the time?
- Design MAC to reduce wasted power due to:
 - Idle listening
 - Overemitting
 - Overhearing
 - Collisions

Preamble Sampling

- Carrier Sense, Multiple Access
- Preamble Sampling
 - I.e. don't listen all the time, just sample and wait for a preamble
 - Sampling = measure received signal strength
- (This isn't the new part...)

Fixed-Length Preamble

- All nodes sample medium with same period, independent offsets.
 If busy, listen until receive packet or not busy.
- Transmitter sends preamble longer than sampling period before each packet.
- + Low power for low traffic
- Power overhead for long preamble
 xmit, plus rcv for all nodes that hear preamble

WiseMAC: Minimized Preamble

- Nodes also send time to next sample in acknowledge packets.
- Nodes maintain table of offsets for common destination nodes.
- Duration of wake-up preamble adjusted to cover maximum drift between clocks.

WiseMAC Preamble Minimization

WiseNET Wakeup Preamble Size

- $Tp = min(4\theta Tc, Tw)$
- Tp = duration of the preamble
- θ = frequency tolerance of time-based quartz
- Tc = interval between communications
- Tw = sampling period
- · Covers potential drift between clocks

Power Comparison

- CSMA limited at low traffic - Receiver never turned off
- T-MAC
 - Choose duty cycle
 - Drops packets at low duty cycles, so get either low power in low traffic or high throughput
- WiseNET is ultralow-power for low traffic, efficient for high traffic.

Radio Design

- Transceiver is biggest power drain in the sensor node.
- WiseMAC is designed for low duty cycle operation. Optimize the transceiver, too.

Radio Design Choices

- Chose high constant transmit power (max allowed in Europe for 434MHz ISM)
 Nodes usually listen a lot, transmit rarely
- Dual-band, multi-channel to reject strong interference
- Reduce energy consumption and wakeup time in receive mode.

Dual-Band, Multi-Channel

- 433MHz ISS, 868 MHz SRD
- Avoid interference from other sources.
- Why not 2.4GHz? (popular, globally available) Power.
 - 50% of receiver power due to circuits operating at the carrier frequency, and power is proportional to the frequency.

Receiver Power

- Receiver power much larger for RF blocks

 Current directly related to frequency of operation or required bandwidth.
 - These are also the blocks that wake up quickly.
- Turn-on time varies inversely with frequency.
- So save power by waking up baseband components first, then RF circuits.

WiseNET Optimizations

- Flexible wake-up sequence
 - Low frequency reference clock
 - Baseband path of channel filters, limiters, & RSSI.
 - Frequency synthesizer
 - Intermediate frequency amplifiers
 - RF frequency low-noise amplifier & mixers

WiseNET Optimizations

- Use RSSI to determine whether to power up rest of the broadband receive chain
 - I.e. if there's no signal, don't process it
- Minimize wakeup time for baseband and intermediate frequencies.
 - Deep submicron process, trade speed for power.
 - Circuit tricks to wake up the baseband fast.

Fast Rx/Tx Turnaround

- You're burning power when switching from Rx to Tx or vice versa, so do it fast.
- WiseNET shares the core (intermediate frequency) circuitry for the receivers and transceivers, so there's very little turnaround time.

WiseNET—SOC

- Custom System-On-Chip (SOC)
- Most sensor node functionality on a single chip to reduce power consumption.
 Sensing, processing, storing, communicating

Bottom Line

- WiseNET transceiver with WiseMAC protocol consumes 25uW when forwarding 56-byte packets every 100 seconds.
- For comparison, Motes...
 - 24mW in receive mode
 - SMAC or TMAC, 10% duty cycle => 2.4mW

To Sum Up...

- SystemOnChip design
- WiseMAC protocol
 - Minimal preamble size reduces xmit and receive overhead.
 - Preamble filtering reduces overhearing.
- · Cool radio transceiver
 - Low power.
 - Efficient wakeup.
 - Quick turnaround between Rx and Tx.