Scalable Information-Driven Sensor Querying and Routing for ad-hoc Heterogeneous Sensor Networks

> Maurice Chu Horst Haussecker Feng Zhao

Introduction

- Focus: sensor networks that are applicable to tracking and identification problems
- Necessities:
 - Novel routing and
 - Collaborative signal processing algorithms
- Key for scalability, low latency and energy awareness in large sensor networks

Introduction

- The paper presents 2 techniques:
 IDSQ
 - CADR
- Information utility measure to select sensors
- Dynamically guide data routing
 - Maximize information gain
 - Minimize detection latency and BW consumption
 - Minimize power consumption
- Generalization of directed diffusion

Sensing Model

General form: $z_i(t) = \mathbf{h}(x(t), \lambda_i(t))$ Linear measurements: $\mathbf{h}(x(t),\lambda_i(t)) = \mathbf{H}_i(t)x(t) + w_i(t)$ Acoustic sensors: $= \frac{1}{||x_i - x||^{\alpha/2}} + w_i, \lambda_i = [x_i, \sigma_i^2]$ z_i

Estimation

Blief: $p(x|z_1,\ldots,z_N)$ Estimate: $\widehat{x} = \mathbf{E}[x|z_1, \dots, z_N]$ • Uncertainty: $\Sigma_{\widehat{x}} = \mathbf{E}[(x - \overline{x})(x - \overline{x})^T | z_1, \dots, z_N]$

Problem Formulation

- Querying a sensor is costly
- Thus sensor characteristics and measurements reside in the individual sensors
- Goal:
 - Select good subset of sensors
 - While reducing communication costs

Information Utility Measures

$$\begin{array}{l} \circ \ \psi(p_x) \ = \ -\det(\Sigma) \\ \circ \ \psi(p_x) \ = \ -\operatorname{Tr}(\Sigma) \\ \circ \ \psi(p_x) \ = \ -h(p_x) \\ \circ \ \psi(p_x) \ = \ -\operatorname{vol}(\Gamma_{\beta}) \\ \Gamma_{\beta} = \{x \in S : p(x) \ge \beta\} \\ \circ \ \psi(p_x) \ = \ (x_j - \widehat{x})^T \Sigma^{-1}(x_j - \widehat{x}) \end{array}$$

Information Driven Sensor Querying

Composite Objective Function

Up till now, ignored communication cost
Composite Objective Function:

$$M_{c}(\lambda_{l},\lambda_{j},p(x|\{z_{i}\}_{i\in U})) =$$

$$\gamma M_{u}(p(x|\{z_{i}\}_{i\in U}),\lambda_{j}) - (1-\gamma)M_{a}(\lambda_{l},\lambda_{j})$$

• Eg.

$$M_u(x_j, \hat{x}, \Sigma) = -(x_j - \hat{x})^T \Sigma^{-1}(x_j - \hat{x})$$
$$M_a(x_j, x_l) = (x_j - x_l)^T (x_j - x_l)$$

Constrained Anisotropic Diffusion Routing

- Global knowledge of sensor properties:
 x_o = arg_x[M_c = 0]
 w/o global knowledge
 - The node that locally maximizes M_c
 - Steepest gradient
 - Composite
- Incremental updates
- Local computations

Experimental Results - IDSQ

- Leader is the centroid sensor
- Others selected one at a time by leader
- Sensor selection is performed:
 - A. Nearest Neighbor
 - Mahalanobis Dist. R

Experimental Results - IDSQ

Experimental Results - CADR

Discussion

Belief Representation

- Parametric Gaussian
- Particle filters
- Updates:
 - Kalman filter
 - EKF
 - Particle re-sampling

Conclusion

- A new approach to distributed, collaborative signal processing in sensor networks is presented
- Two key ideas outlined:
 - IDSQ Based on information gain
 - CADR Additional constraints (energy, communication)
- Incremental update of the belief
- Local computations
- Presented experimental results