
Sensors Network SoftwareSensors Network Software

Qing Fang
Stanford University

Sensing Networking

Computation

CS428CS428

Outline

Why is writing software for sensornet so hard?

Programming platforms
TinyOS (Berkeley) – in details
Em* (UCLA) – very brief

Discussion
Networking abstractions
Programming models

Embedded Networking Systems vs. the Internet –
Different set of Goals and Principles

The Internet:

RFC 1958 (“Architectural
Principles of the Internet”)
reads:

“However, in very general terms, the
community believes the goal is
connectivity, the tool is the
Internet Protocol, and the
intelligence is end-to-end rather
than hidden in the network…
connectivity is its own reward, and
is more valuable than any
individual application”

EmNets:

The goal is application-specific
collaboration among the
nodes.

In-network processing rather
than end-to-end.

Software Challenges

Uncertainty
System uncertainty
Data uncertainty

Lack of a common architecture

Energy constraints – may change over time

Worst of All Worlds

“Text”

Timing-
Dependent

Data

Real-World
Sensor
Inputs

Single- or Few-
Threaded

Multi-Threaded

OS Kernels/
Device Drivers

MS Word
cat

Robotics Sensor
Networks

Distributed,
Timing Dependent System

MPI/Linda

Distributed
Robotics

Squid

TCP

System Uncertainty

Data
Uncertainty

Source: Jeremy Elson, Microsoft Research

An Architecture

Is a set of principles that guide where functionality
should be implemented along with a set of
interfaces, functional components, protocols,
and physical hardware that follows those
guidelines.

Traditional System Architecture

Well established layers of
abstractions
Ample resources
Independent applications
at endpoints that
communicate pt-2-pt
through routers

User

System

Physical Layer

Data Link

Network

Transport

Network Stack

Threads

Address Space

Drivers

Files

Application

Application

Routers

A Sensor Network Architecture?

No, don’t have one yet.

We are still at the stage of extracting
abstractions.

But, we know what we want
Incorporates current generation of technology
Allows future innovation
Promotes interoperability

Sensornet Functional Layer Decomposition
– Separation of Concerns

Source: David Culler, et al., Berkeley

TinyOS – Approach

Does not define a particular system/user boundary nor a
set of system services.

Provides a framework for defining such boundaries and
allows applications to select services and their
implementations.

•128kB program flash

•512kB serial flash

TinyOS – Design Considerations

Diversity in design and usage

Robust

inaccessible, critical operation

Concurrency intensive in bursts

streams of sensor data &

network traffic

Highly constrained resources

Applications spread over many small nodes

self-organizing collectives

highly integrated with changing
environment and network

 ����������	
���
����	���	�
���	����
����
��
������

����
	���
�����������

 �����
���
�����������

������	��	�
���
�
���
	�
	����
	�

 efficient modularity

 migration across HW/SW
boundary

TinyOS – Choices of Programming Primitives

provide framework for concurrency and
modularity
never poll, never block
interleaving flows, events, energy
management

 allow appropriate abstractions to emerge

TinyOS Features

Microthreaded OS (lightweight thread support)

An event-driven concurrency model without blocking

Two level scheduling structure

Long running tasks that can be interrupted by hardware events

Modularity allows crossover of software components into
hardware

The following slides on TinyOS are from
David Culler, et al., UC Berkeley

TinyOS Concepts
Scheduler + Graph of Components

constrained two-level scheduling model:
threads + events

Component
Commands,
Event Handlers
Tasks (concurrency)
Frame (storage)

Constrained Storage Model
frame per component, shared stack, no
heap

Very lean multithreading
Layering

Messaging Component

in
it

P
ow

er
(m

od
e)

T
X

_p
ac

ke
t(b

uf
)

T
X

_p
ac

k
et

_d
on

e

R
X

_p
ac

k
et

_d
on

e
(b

uf
fe

r)

Internal
State

in
it

po
w

er
(m

od
e)

se
nd

_m
sg

(a
dd

r,
ty

pe
, d

at
a)

m
sg

_r
ec

(ty
pe

, d
at

a)
m

sg
_s

en
d_

do
ne

)

internal thread

Commands Events

Application = Graph of Components

RFM

Radio byte

Radio Packet

UART

Serial Packet

ADC

Temp photo

Active Messages

clocksbi
t

by
te

pa
ck

et

Route map router sensor appln

ap
pl

ic
at

io
n

HW

SW
Example: ad hoc, multi-hop
routing of photo sensor
readings

3450 B code
226 B data

Graph of cooperating
state machines
on shared stack

TinyOS Execution Model

commands request action
ack/nack at every boundary
call cmd or post task

events notify occurrence
HW intrpt at lowest level
may signal events
call cmds
post tasks

Tasks provide logical
concurrency

preempted by events

Migration of HW/SW
boundary

RFM

Radio byte

Radio Packet

bi
t

by
te

pa
ck

et

event-driven bit-pump

event-driven byte-pump

event-driven packet-pump

message-event driven

active message

application comp

encode/decode

crc

data processing

Dynamics of Events and Threads

bit event filtered
at byte layer

bit event =>
end of byte =>

end of packet =>
end of msg send

thread posted to start

send next message

radio takes clock events to detect recv

Event-Driven Sensor Access Pattern

command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 200);

}

event result_t Timer.fired() {

return call sensor.getData();

}

event result_t sensor.dataReady(uint16_t data) {

display(data)

return SUCCESS;

}

��������������������

Timer Photo LED

TinyOS Execution Contexts

Events generated by interrupts preempt tasks
Tasks do not preempt tasks
Both essential process state transitions

Hardware

Interrupts

ev
en

ts

commands

Tasks

Typical application use of tasks

event driven data acquisition
schedule task to do computational portion

event result_t sensor.dataReady(uint16_t data) {

putdata(data);

post processData();

return SUCCESS;

}

task void processData() {

int16_t i, sum=0;

for (i=0; i ‹ maxdata; i++)

sum += (rdata[i] ›› 7);

display(sum ›› shiftdata);

}

Tasks in low-level operation

transmit packet
send command schedules task to calculate CRC
task initiated byte-level data pump
events keep the pump flowing

• receive packet
– receive event schedules task to check CRC
– task signals packet ready if OK

• byte-level tx/rx
– task scheduled to encode/decode each complete byte
– must take less time that byte data transfer

Task Scheduling

Currently simple fifo scheduler
Bounded number of pending tasks
When idle, shuts down node except clock
Uses non-blocking task queue data structure
Simple event-driven structure + control over
complete application/system graph

Tiny Active Messages
Sending

Declare buffer storage in a frame
Request Transmission
Name a handler
Handle Completion signal

Receiving
Declare a handler
Firing a handler

Buffer management
strict ownership exchange
tx: done event => reuse
rx: must rtn a buffer

Sending a message
bool pending;

struct TOS_Msg data;

command result_t IntOutput.output(uint16_t value) {

IntMsg *message = (IntMsg *)data.data;

if (!pending) {

pending = TRUE;

message->val = value;

message->src = TOS_LOCAL_ADDRESS;
if (call Send.send(TOS_BCAST_ADDR, sizeof(IntMsg), &data))

return SUCCESS;

pending = FALSE;

}

return FAIL;

}
destination length

• Refuses to accept command if buffer is still full or network refuses to accept
send command

• User component provide structured msg storage

Send done event
event result_t IntOutput.sendDone(TOS_MsgPtr msg,

result_t success)

{

if (pending && msg == &data) {

pending = FALSE;

signal IntOutput.outputComplete(success);

}

return SUCCESS;

}

}

Receive Event

Active message automatically dispatched to
associated handler

knows the format, no run-time parsing
performs action on message event

Must return free buffer to the system
typically the incoming buffer if processing complete

event TOS_MsgPtr ReceiveIntMsg.receive(TOS_MsgPtr m) {

IntMsg *message = (IntMsg *)m->data;

call IntOutput.output(message->val);

return m;

}

Programming TinyOS

TinyOS 1.0 is written in an extension of C, called
nesC
Applications are too!

just additional components composed with the OS
components

Provides syntax for TinyOS concurrency and storage
model

commands, events, tasks
local frame variable

Rich Compositional Support

Composition
A component specifies a set of interfaces by which it
is connected to other components

provides a set of interfaces to others
uses a set of interfaces provided by others

Interfaces are bi-directional
include commands and events

Interface methods are the external namespace of
the component

Timer Component

StdControl Timer

Clock

provides

uses

provides

interface StdControl;

interface Timer:

uses

interface Clock

Components
Modules

provide code that implements one or more interfaces and
internal behavior

Configurations
link together components to yield new component

Interface
logically related set of commands and events

StdControl.nc

interface StdControl {

command result_t init();

command result_t start();

command result_t stop();

}

Clock.nc

interface Clock {

command result_t setRate(char interval, char scale);

event result_t fire();

}

Example top level configuration
configuration SenseToRfm {

// this module does not provide any interface

}

implementation

{

components Main, SenseToInt, IntToRfm, ClockC, Photo as
Sensor;

Main.StdControl -> SenseToInt;

Main.StdControl -> IntToRfm;

SenseToInt.Clock -> ClockC;

SenseToInt.ADC -> Sensor;

SenseToInt.ADCControl -> Sensor;

SenseToInt.IntOutput -> IntToRfm;

}

�������	�
�������	�
�������	�
�������	�

ClockC Photo

Main

StdControl

ADCControl IntOutputClock ADC

IntToRfm

Nested configuration
includes IntMsg;

configuration IntToRfm

{

provides {

interface IntOutput;

interface StdControl;

}

}

implementation

{

components IntToRfmM, GenericComm as Comm;

IntOutput = IntToRfmM;

StdControl = IntToRfmM;

IntToRfmM.Send -> Comm.SendMsg[AM_INTMSG];

IntToRfmM.SubControl -> Comm;

}

IntToRfmM

GenericComm

StdControl IntOutput

SubControl SendMsg[AM_INTMSG];

IntToRfm Module
includes IntMsg;

module IntToRfmM
{

uses {
interface StdControl as SubControl;
interface SendMsg as Send;

}
provides {

interface IntOutput;
interface StdControl;

}
}
implementation
{

bool pending;
struct TOS_Msg data;

command result_t StdControl.init() {
pending = FALSE;
return call SubControl.init();

}

command result_t StdControl.start()

{ return call SubControl.start(); }

command result_t StdControl.stop()

{ return call SubControl.stop(); }

command result_t IntOutput.output(uint16_t
value)

{

...

if (call Send.send(TOS_BCAST_ADDR,
sizeof(IntMsg), &data)

return SUCCESS;

...

}

event result_t Send.sendDone(TOS_MsgPtr
msg, result_t success)

{

...

A Multihop Routing Example

Supporting HW evolution

Distribution broken into
apps: top-level applications
lib: shared application components
system: hardware independent system components
platform: hardware dependent system components

Component design so HW and SW look the
same
HW/SW boundary can move up and down with
minimal changes

TinyOS tools
TOSSIM: a simulator for tinyos programs

ListenRaw, SerialForwarder: java tools to receive raw packets on PC from
base node

Oscilloscope: java tool to visualize (sensor) data in real time

Memory usage: breaks down memory usage per component (in contrib)

Peacekeeper: detect RAM corruption due to stack overflows (in lib)

Stopwatch: tool to measure execution time of code block by timestamping at
entry and exit

Makedoc and graphviz: generate and visualize component hierarchy

Surge, Deluge, SNMS, TinyDB

TinyOS Limitations
Static allocation allows for compile-time analysis, but can make
programming harder

No support for heterogeneity
Support for other platforms (e.g. stargate)

Support for high data rate apps (e.g. acoustic beamforming)

Interoperability with other software frameworks and languages

Limited visibility

Debugging

Intra-node fault tolerance

Robustness solved in the details of implementation
nesC offers only some types of checking

Em*
Software environment for sensor networks built from
Linux-class devices

Claimed features:

Simulation and emulation tools

Modular, but not strictly layered architecture

Robust, autonomous, remote operation

Fault tolerance within node and between nodes

Reactivity to dynamics in environment and task

High visibility into system: interactive access to all services

Contrasting Emstar and TinyOS

Similar design choices
programming framework

Component-based design
“Wiring together” modules into an application

event-driven
reactive to “sudden” sensor events or triggers

Differences
hardware platform-dependent constraints

Emstar: Develop without optimization
TinyOS: Develop under severe resource-constraints

operating system and language choices
Emstar: easy to use C language, tightly coupled to linux
TinyOS: an extended C-compiler (nesC), an OS by itself

Em* Transparently Trades-off Scale vs. Reality

Em* code runs transparently at many degrees of “reality”:

high visibility debugging before low-visibility deployment

Reality

Sc
al

e

Pure Simulation

Data Replay

Portable Array

Deployment

Ceiling Array

Other Platforms

SOS – UCLA

Contiki – Swedish Institute of Computer Science

Virtual machines (Mat�) �UC Berkeley

Go Back to the Architecture Challenge

We need higher level abstractions!
Why?

They let you reason about software at a higher level.
They let software interoperate better.

Compact
Consistent
Reuse

And this calls for…

Towards Higher Level Abstractions

Better understanding of the applications

More efficient and effective algorithms
Designing local rules to cause global behavior is hard

The Emerging Networking Abstractions

Singer hop communication – active message
Multi-hop communication

Tree based routing
Directed diffusion
Broadcast
Epidemic protocols
Landmark based routing? �

Power management
Time synchronization

Mechanism vs. policy

Programming Models

TinyOS is no fun to program
Split-phase operation A logically blocking
sequence must be written in a state-machine style.

State Machine Model? (ETH)*
Token Machine Model? (MIT)*

* In proceedings of IPSN, 2005

The End

