Sensors Network Software

Qing Fang
Stanford University

VH,
()/ ~.

Sensing Networking

&
©

@~

d_>

|

&

CS428



Outline

@ Why is writing software for sensornet so hard?

@ Programming platforms

@ TinyOS (Berkeley) — in details
@ Em* (UCLA) — very brief

@ Discussion
@ Networking abstractions
@ Programming models



Embedded Networking Systems vs. the Internet —
Different set of Goals and Principles

The Internet: EmNets:

@ RFC 1958 (“Architectural @ The goal is application-specific
Principles of the Internet”) collaboration among the
reads: nodes.

“However, in very general terms, the
community believes the goal is :
connectivity, the tool is the @ In-network processing rather
Internet Protocol, and the than end-to-end.

intelligence is end-to-end rather
than hidden in the network...
connectivity is its own reward, and
is more valuable than any
individual application”



Software Challenges

@ Uncertainty
@ System uncertainty
@ Data uncertainty

@ Lack of a common architecture

@ Energy constraints — may change over time
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An Architecture

Is a set of principles that guide where functionality
should be implemented along with a set of
interfaces, functional components, protocols,
and physical hardware that follows those
guidelines.



Traditional System Architecture
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A Sensor Network Architecture?

@ No, don’t have one yet.

@ We are still at the stage of extracting
abstractions.

@ But, we know what we want
@ Incorporates current generation of technology
@ Allows future innovation
@ Promotes interoperability
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TinyOS — Approach

@ Does not define a particular system/user boundary nor a
set of system services.

@ Provides a framework for defining such boundaries and
allows applications to select services and their
Implementations.

«128kB program flash
*512kB serial flash




TinyOS — Design Considerations

@ Diversity in design and usage efficient modularity
@ Robust migration across HW/SW
boundary

@ inaccessible, critical operation

@ Concurrency intensive in bursts

Need a framework for:
@ streams of sensor data & _
Resource-constrained

network traffic concurrency

@ Highly constrained resources

@ Applications spread over many small nodes

@ self-organizing collectives Need Application-specific

@ highly integrated with changing  processing that allows
environment and network abstractions to emerge



TinyOS — Choices of Programming Primitives

@ provide framework for concurrency and
modularity

@ never poll, never block

@ interleaving flows, events, energy
management

allow appropriate abstractions to emerge



TinyOS Features

@ Microthreaded OS (lightweight thread support)
@ An event-driven concurrency model without blocking

@ Two level scheduling structure

@ Long running tasks that can be interrupted by hardware events

a@ Modularity allows crossover of software components into
hardware



The following slides on TinyOS are from
David Culler, et al., UC Berkeley



TinyOS Concepts

@ Scheduler + Graph of Components
a constrained two-level scheduling model: Commands

threads + events

@ Component
@ Commands,
@ Event Handlers
@ Tasks (concurrency)
@ Frame (storage)

@ Constrained Storage Model

@ frame per component, shared stack, no.

heap
@ Very lean multithreading
@ Layering
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TinyOS Execution Model

@ commands request action
@ ack/nack at every boundary
@ call cmd or post task

@ events notify occurrence
@ HW intrpt at lowest level
@ may signal events
@ call cmds
@ post tasks

packet

o Tasks provide logical -
concurrency
@ preempted by events S

@ Migration of HW/SW
boundary
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Dynamics of Events and Threads
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Event-Driven Sensor Access Pattern

command result_t StdControl.start () ({ SENSE
return call Timer.start (TIMER REPEAT, 200);
) N
event result_t Timer.fired() { Timer || Photo || LED

return call sensor.getData();

}

event result_t sensor.dataReady(uintl6_t data) ({

display (data)
return SUCCESS;



TinyOS Execution Contexts

NO N\
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commands

Tasks

events

Interrupts

Hardware

@ Events generated by interrupts preempt tasks
@ Tasks do not preempt tasks
@ Both essential process state transitions



Typical application use of tasks

@ event driven data acquisition
@ schedule task to do computational portion

event result_t sensor.dataReady(uintl6_t data) ({

putdata (data) ;

post processData();
return SUCCESS;

}

task void processData () {

intlé_t i, sum=0;
for (i=0; i < maxdata; i++)

sum += (rdatal[i] »>> 7);

display(sum >> shiftdata); T [
} BK HIHBEEE S Hw. vvvvvv - Term. ‘ P oscilloscope ‘l | et Tmm;“(z;‘&il:naen Capture ‘E ”HH H l‘




Tasks in low-level operation

atransmit packet
@ send command schedules task to calculate CRC
@ task initiated byte-level data pump
@ events keep the pump flowing

* receive packet

— receive event schedules task to check CRC
— task signals packet ready if OK

* byte-level tx/rx
— task scheduled to encode/decode each complete byte
— must take less time that byte data transfer



Task Scheduling

@ Currently simple fifo scheduler

@ Bounded number of pending tasks

@ When idle, shuts down node except clock

@ Uses non-blocking task queue data structure

@ Simple event-driven structure + control over
complete application/system graph



Tiny Active Messages
@Sending

@ Declare buffer storage in a frame
@ Request Transmission

@ Name a handler

@ Handle Completion signal

@Recelving

@ Declare a handler
@ Firing a handler

a@Buffer management
@ strict ownership exchange
@ tx: done event => reuse
@ rx: must rtn a buffer



Sending a message

bool pending;
struct TOS_Msg data;
command result_t IntOutput.output (uintlé_t wvalue) {
IntMsg *message = (IntMsg *)data.data;
if (!pending) {
pending = TRUE;
message—->val = value;
message—->src = TOS_LOCAL_ADDRESS;
if (call Send.send(TOS_BCAST_ADDR, | sizeof (IntMsg)| &data))
return SUCCESS;
pending = FALSE;

}

return FAIL; destination length

» Refuses to accept command if buffer is still full or network refuses to accept
send command

» User component provide structured msg storage



Send done event

event result_t IntOutput.sendDone (TOS_MsgPtr msg,
result_t success)

if (pending && msg == &data) ({
pending = FALSE;
signal IntOutput.outputComplete (success);

}
return SUCCESS;



Receive Event

event TOS_MsgPtr ReceivelIntMsg.receive (TOS_MsgPtr m) ({
IntMsg *message = (IntMsg *)m->data;
call IntOutput.output (message->val);

return m;

}

@ Active message automatically dispatched to
associated handler
@ knows the format, no run-time parsing
@ performs action on message event
@ Must return free buffer to the system
@ typically the incoming buffer if processing complete



Programming TinyOS

@ TinyOS 1.0 is written in an extension of C, called
nesC

@ Applications are too!

@ just additional components composed with the OS
components

@ Provides syntax for TinyOS concurrency and storage
model
@ commands, events, tasks
@ local frame variable

@ Rich Compositional Support



Composition

@ A component specifies a set of interfaces by which it
IS connected to other components

@ provides a set of interfaces to others
@ uses a set of interfaces provided by others

@ Interfaces are bi-directional
@ include commands and events

@ Interface methods are the external namespace of

the component \A A/ YA provides
provides | StdControl [ Timer
interface StdControl;
interface Timer: Timer Component
uses
interface Clock Clock

v A uses



Components

@ Modules
@ provide code that implements one or more interfaces and
internal behavior
@ Configurations
@ link together components to yield new component

@ Interface
@ logically related set of commands and events

StdControl.nc Clock.nc

interface StdControl {

i £ lock
command result_t init(); i b L LIS G2

command result_t start(); command result_t setRate(char interval, char scale);

command result_t stop(); event result_t fire();



Example top level configuration

configuration SenseToRfm {
// this module does not provide any interface

}

implementation

{

components Main, SenseToInt, IntToRfm, ClockC, Photo as
Sensor;

Main.StdControl —-> SenseTolnt; : Main
Main.StdControl -> IntToRfm; i StdControl
SenseToInt .Clock -> ClockC; i SenseTolnt
SenseToInt .ADC -> Sensor; I

\ Clock ADC| [ADCControl | IntOutput
SenseToInt .ADCControl -> Sensor; !
SenseToInt.IntOutput —> IntToRfm; ' | Clockd| Photo | |IntToRfm



Nested configuration

includes IntMsg; StdControl  IntOutput
configuration IntToRfm ‘ ‘

{

provides { IntToRfmMM
interface IntOutput;
interface StdControl; SubControl SendMsg[AM_INTMSG];
}
} GenericComm
implementation

{

components IntToRfmM, GenericComm as Comm;

IntOutput = IntToRfmM;
StdControl = IntToRfmM;

IntToRfmM.Send -> Comm.SendMsg[AM_ INTMSG];
IntToRfmM. SubControl -> Comm;



IntToRfm Module

. . command result_t StdControl.start ()
includes IntMsg;

{ return call SubControl.start(); }
module IntToRfmM

( command result_t StdControl.stop()

uses { { return call SubControl.stop(); }
interface StdControl as SubControl;
interface SendMsg as Send;

} command result_t IntOutput.output (uintlé_t
provides { value)
interface IntOutput; {

interface StdControl;

}

} if (call Send.send(TOS BCAST ADDR,
implementation sizeof (IntMsg), &data)
¢ . return SUCCESS;
bool pending;
struct TOS_Msg data;
command result_t StdControl.init() { b
pending = FALSE;
return call SubControl.init(); event result_t Send.sendDone (TOS_MsgPtr
} msg, result_t success)

{



A Multihop Routing Example

Surgel

SeConiral
Main SurgeM

SidControl ADC | Tirmer Lads

SidConiral | ADC SdConiral | Timer StdContrd | SerdMsg Leds
Photo TimerC Multihop LedsC




Supporting HW evolution

@ Distribution broken into
@apps:. top-level applications
olib: shared application components
a@system: hardware independent system components
aplatform: hardware dependent system components

@Component design so HW and SW look the
same

@HW/SW boundary can move up and down with
minimal changes



TinyOS tools

TOSSIM: a simulator for tinyos programs

ListenRaw, SerialForwarder: java tools to receive raw packets on PC from
base node

Oscilloscope: java tool to visualize (sensor) data in real time
Memory usage: breaks down memory usage per component (in contrib)
Peacekeeper: detect RAM corruption due to stack overflows (in /ib)

Stopwatch: tool to measure execution time of code block by timestamping at
entry and exit

Makedoc and graphviz: generate and visualize component hierarchy

Surge, Deluge, SNMS, TinyDB



TinyOS Limitations

Static allocation allows for compile-time analysis, but can make
programming harder

No support for heterogeneity

@ Support for other platforms (e.g. stargate)

@ Support for high data rate apps (e.g. acoustic beamforming)

@ Interoperability with other software frameworks and languages

Limited visibility
@ Debugging

@ Intra-node fault tolerance

Robustness solved in the details of implementation
@ nesC offers only some types of checking



Em*

@ Software environment for sensor networks built from
Linux-class devices

@ Claimed features:
@ Simulation and emulation tools
@ Modular, but not strictly layered architecture
@ Robust, autonomous, remote operation
@ Fault tolerance within node and between nodes
@ Reactivity to dynamics in environment and task

@ High visibility into system: interactive access to all services



Contrasting Emstar and TinyOS

@ Similar design choices

@ programming framework
@ Component-based design
@ “Wiring together” modules into an application

@ event-driven
@ reactive to “sudden” sensor events or triggers

@ Differences

@ hardware platform-dependent constraints
@ Emstar: Develop without optimization
@ TinyOS: Develop under severe resource-constraints

@ operating system and language choices
@ Emstar: easy to use C language, tightly coupled to linux
@ TinyOS: an extended C-compiler (nesC), an OS by itself



Em* Transparently Trades-off Scale vs. Reality

Em™ code runs transparently at many degrees of “reality”:

high visibility debugging before low-visibility deployment

A @ Pure Simulation

O Deployment
o @ Data Replay
=
>
7!
O Ceiling Array
O Portable Array
>

Reality



Other Platforms

@ SOS — UCLA
@ Contiki — Swedish Institute of Computer Science

@ Virtual machines (Maté) —UC Berkeley



Go Back to the Architecture Challenge

We need higher level abstractions!
Why?
@ They let you reason about software at a higher level.

@ They let software interoperate better.
@ Compact
@ Consistent
@ Reuse

And this calls for...



Towards Higher Level Abstractions

@ Better understanding of the applications

@ More efficient and effective algorithms
@ Designing local rules to cause global behavior is hard



The Emerging Networking Abstractions

@ Singer hop communication — active message

@ Multi-hop communication
@ Tree based routing
@ Directed diffusion

@ Broadcast Mechanism vs. policy
@ Epidemic protocols

@ Landmark based routing? ©
@ Power management
@ Time synchronization



Programming Models

@ TinyOS is no fun to program

@ Split-phase operation A logically blocking
sequence must be written in a state-machine style.

@ State Machine Model? (ETH)*
@ Token Machine Model? (MIT)*

* In proceedings of IPSN, 2005



The End



