Sensors Network Software

Qing Fang
Stanford University

VH,
()/ ~.

Sensing Networking

&
©

@~

d_>

|

&

CS428

Outline

@ Why is writing software for sensornet so hard?

@ Programming platforms

@ TinyOS (Berkeley) — in details
@ Em* (UCLA) — very brief

@ Discussion
@ Networking abstractions
@ Programming models

Embedded Networking Systems vs. the Internet —
Different set of Goals and Principles

The Internet: EmNets:

@ RFC 1958 (“Architectural @ The goal is application-specific
Principles of the Internet”) collaboration among the
reads: nodes.

“However, in very general terms, the
community believes the goal is :
connectivity, the tool is the @ In-network processing rather
Internet Protocol, and the than end-to-end.

intelligence is end-to-end rather
than hidden in the network...
connectivity is its own reward, and
is more valuable than any
individual application”

Software Challenges

@ Uncertainty
@ System uncertainty
@ Data uncertainty

@ Lack of a common architecture

@ Energy constraints — may change over time

|

Data

Uncertainty

Real-World
Sensor
Inputs

Timing-
Dependent
Data

“Text”

Worst of All Worlds

Threaded

Distributed
Robotics Robotics gansor
Networks
OS Kernels/
Device Drivers TCP
Squid
S e MPI/Linda
cat
Single- or Few- Multi-Threaded Distributed,

Timing Dependent System
System Uncertainty —>

Source: Jeremy Elson, Microsoft Research

An Architecture

Is a set of principles that guide where functionality
should be implemented along with a set of
interfaces, functional components, protocols,
and physical hardware that follows those
guidelines.

Traditional System Architecture

[A UE] @ Well established layers of
[Application] abstractions
il @ Ample resources
System @ Independent applications
Network Stack at endpoints that

Threads Transport communicate pt-2-pt
Address Space Network through routers

Files Data Link

Physical Layer

Drivers \

N

A Sensor Network Architecture?

@ No, don’t have one yet.

@ We are still at the stage of extracting
abstractions.

@ But, we know what we want
@ Incorporates current generation of technology
@ Allows future innovation
@ Promotes interoperability

Sensornet Functional Layer Decomposition

— Separation of Concerns

Power Mgmt.

System Mgmt.

Discovery
Security

Timing

Sensor-Net Application

In-Nem'nrk Stnrage

oo oo o

e e S S _________|

S S S _________| S g S S

Data Link

Physical Architecture

—————————| —_—_———— e ———— — |—————————————

Source: David Culler, et al.,

Berkeley

TinyOS — Approach

@ Does not define a particular system/user boundary nor a
set of system services.

@ Provides a framework for defining such boundaries and
allows applications to select services and their
Implementations.

«128kB program flash
*512kB serial flash

TinyOS — Design Considerations

@ Diversity in design and usage efficient modularity
@ Robust migration across HW/SW
boundary

@ inaccessible, critical operation

@ Concurrency intensive in bursts

Need a framework for:
@ streams of sensor data & _
Resource-constrained

network traffic concurrency

@ Highly constrained resources

@ Applications spread over many small nodes

@ self-organizing collectives Need Application-specific

@ highly integrated with changing processing that allows
environment and network abstractions to emerge

TinyOS — Choices of Programming Primitives

@ provide framework for concurrency and
modularity

@ never poll, never block

@ interleaving flows, events, energy
management

allow appropriate abstractions to emerge

TinyOS Features

@ Microthreaded OS (lightweight thread support)
@ An event-driven concurrency model without blocking

@ Two level scheduling structure

@ Long running tasks that can be interrupted by hardware events

a@ Modularity allows crossover of software components into
hardware

The following slides on TinyOS are from
David Culler, et al., UC Berkeley

TinyOS Concepts

@ Scheduler + Graph of Components
a constrained two-level scheduling model: Commands

threads + events

@ Component
@ Commands,
@ Event Handlers
@ Tasks (concurrency)
@ Frame (storage)

@ Constrained Storage Model

@ frame per component, shared stack, no.

heap
@ Very lean multithreading
@ Layering

g

(addr,

init

power(mode)
send_ms
type, data)

LA
N
L
S
L
S

Events

d done

| _msg _rec(type, data)
msg_sen

Messaging Component

internal thread

Internal
State

JAVAN

RX pack

et done

TX_pack

et done

(buffer)

)

application

packet

byte

Application = Graph of Components

Route map router

sensor appln

I

W

Active Messages

M M

Radio Packet| [Serial Packet

M M\

SW

Radio byt% UART

M

bit

RFM

HW

clock

Example: ad hoc, multi-hop
routing of photo sensor
readings

3450 B code
226 B data

Graph of cooperating
state machines
on shared stack

TinyOS Execution Model

@ commands request action
@ ack/nack at every boundary
@ call cmd or post task

@ events notify occurrence
@ HW intrpt at lowest level
@ may signal events
@ call cmds
@ post tasks

packet

o Tasks provide logical -
concurrency
@ preempted by events S

@ Migration of HW/SW
boundary

application comp data processing

A

message-event driven

active message

L

TT event-driven packet-pump

Radio Packet

crc

N\

N\

event-driven byte-pump

Radio byte

encode/decode

\

RFM

event-driven bit-pump

Dynamics of Events and Threads

bit event filtered
at byte layer \

bit event =>
end of byte =>

end of packet =>
end of msg send / send next message

thread posted to start

AM
zend_msg

Application
Al
Packat
Radio byte
RFM

T4 pin

or? o sand_msg_thiead
i
|
irner sampling or packe s1art
i i sy mbal enery oL

radio takes clock events to detect recv

Event-Driven Sensor Access Pattern

command result_t StdControl.start () ({ SENSE
return call Timer.start (TIMER REPEAT, 200);
) N
event result_t Timer.fired() { Timer || Photo || LED

return call sensor.getData();

}

event result_t sensor.dataReady(uintl6_t data) ({

display (data)
return SUCCESS;

TinyOS Execution Contexts

NO N\
NN X

commands

Tasks

events

Interrupts

Hardware

@ Events generated by interrupts preempt tasks
@ Tasks do not preempt tasks
@ Both essential process state transitions

Typical application use of tasks

@ event driven data acquisition
@ schedule task to do computational portion

event result_t sensor.dataReady(uintl6_t data) ({

putdata (data) ;

post processData();
return SUCCESS;

}

task void processData () {

intlé_t i, sum=0;
for (i=0; i < maxdata; i++)

sum += (rdatal[i] »>> 7);

display(sum >> shiftdata); T [
} BK HIHBEEE S Hw. vvvvvv - Term. ‘ P oscilloscope ‘l | et Tmm;“(z;‘&il:naen Capture ‘E ”HH H l‘

Tasks in low-level operation

atransmit packet
@ send command schedules task to calculate CRC
@ task initiated byte-level data pump
@ events keep the pump flowing

* receive packet

— receive event schedules task to check CRC
— task signals packet ready if OK

* byte-level tx/rx
— task scheduled to encode/decode each complete byte
— must take less time that byte data transfer

Task Scheduling

@ Currently simple fifo scheduler

@ Bounded number of pending tasks

@ When idle, shuts down node except clock

@ Uses non-blocking task queue data structure

@ Simple event-driven structure + control over
complete application/system graph

Tiny Active Messages
@Sending

@ Declare buffer storage in a frame
@ Request Transmission

@ Name a handler

@ Handle Completion signal

@Recelving

@ Declare a handler
@ Firing a handler

a@Buffer management
@ strict ownership exchange
@ tx: done event => reuse
@ rx: must rtn a buffer

Sending a message

bool pending;
struct TOS_Msg data;
command result_t IntOutput.output (uintlé_t wvalue) {
IntMsg *message = (IntMsg *)data.data;
if (!pending) {
pending = TRUE;
message—->val = value;
message—->src = TOS_LOCAL_ADDRESS;
if (call Send.send(TOS_BCAST_ADDR, | sizeof (IntMsg)| &data))
return SUCCESS;
pending = FALSE;

}

return FAIL; destination length

» Refuses to accept command if buffer is still full or network refuses to accept
send command

» User component provide structured msg storage

Send done event

event result_t IntOutput.sendDone (TOS_MsgPtr msg,
result_t success)

if (pending && msg == &data) ({
pending = FALSE;
signal IntOutput.outputComplete (success);

}
return SUCCESS;

Receive Event

event TOS_MsgPtr ReceivelIntMsg.receive (TOS_MsgPtr m) ({
IntMsg *message = (IntMsg *)m->data;
call IntOutput.output (message->val);

return m;

}

@ Active message automatically dispatched to
associated handler
@ knows the format, no run-time parsing
@ performs action on message event
@ Must return free buffer to the system
@ typically the incoming buffer if processing complete

Programming TinyOS

@ TinyOS 1.0 is written in an extension of C, called
nesC

@ Applications are too!

@ just additional components composed with the OS
components

@ Provides syntax for TinyOS concurrency and storage
model
@ commands, events, tasks
@ local frame variable

@ Rich Compositional Support

Composition

@ A component specifies a set of interfaces by which it
IS connected to other components

@ provides a set of interfaces to others
@ uses a set of interfaces provided by others

@ Interfaces are bi-directional
@ include commands and events

@ Interface methods are the external namespace of

the component \A A/ YA provides
provides | StdControl [Timer
interface StdControl;
interface Timer: Timer Component
uses
interface Clock Clock

v A uses

Components

@ Modules
@ provide code that implements one or more interfaces and
internal behavior
@ Configurations
@ link together components to yield new component

@ Interface
@ logically related set of commands and events

StdControl.nc Clock.nc

interface StdControl {

i £ lock
command result_t init(); i b L LIS G2

command result_t start(); command result_t setRate(char interval, char scale);

command result_t stop(); event result_t fire();

Example top level configuration

configuration SenseToRfm {
// this module does not provide any interface

}

implementation

{

components Main, SenseToInt, IntToRfm, ClockC, Photo as
Sensor;

Main.StdControl —-> SenseTolnt; : Main
Main.StdControl -> IntToRfm; i StdControl
SenseToInt .Clock -> ClockC; i SenseTolnt
SenseToInt .ADC -> Sensor; I

\ Clock ADC| [ADCControl | IntOutput
SenseToInt .ADCControl -> Sensor; !
SenseToInt.IntOutput —> IntToRfm; ' | Clockd| Photo | |IntToRfm

Nested configuration

includes IntMsg; StdControl IntOutput
configuration IntToRfm ‘ ‘

{

provides { IntToRfmMM
interface IntOutput;
interface StdControl; SubControl SendMsg[AM_INTMSG];
}
} GenericComm
implementation

{

components IntToRfmM, GenericComm as Comm;

IntOutput = IntToRfmM;
StdControl = IntToRfmM;

IntToRfmM.Send -> Comm.SendMsg[AM_ INTMSG];
IntToRfmM. SubControl -> Comm;

IntToRfm Module

. . command result_t StdControl.start ()
includes IntMsg;

{ return call SubControl.start(); }
module IntToRfmM

(command result_t StdControl.stop()

uses { { return call SubControl.stop(); }
interface StdControl as SubControl;
interface SendMsg as Send;

} command result_t IntOutput.output (uintlé_t
provides { value)
interface IntOutput; {

interface StdControl;

}

} if (call Send.send(TOS BCAST ADDR,
implementation sizeof (IntMsg), &data)
¢ . return SUCCESS;
bool pending;
struct TOS_Msg data;
command result_t StdControl.init() { b
pending = FALSE;
return call SubControl.init(); event result_t Send.sendDone (TOS_MsgPtr
} msg, result_t success)

{

A Multihop Routing Example

Surgel

SeConiral
Main SurgeM

SidControl ADC | Tirmer Lads

SidConiral | ADC SdConiral | Timer StdContrd | SerdMsg Leds
Photo TimerC Multihop LedsC

Supporting HW evolution

@ Distribution broken into
@apps:. top-level applications
olib: shared application components
a@system: hardware independent system components
aplatform: hardware dependent system components

@Component design so HW and SW look the
same

@HW/SW boundary can move up and down with
minimal changes

TinyOS tools

TOSSIM: a simulator for tinyos programs

ListenRaw, SerialForwarder: java tools to receive raw packets on PC from
base node

Oscilloscope: java tool to visualize (sensor) data in real time
Memory usage: breaks down memory usage per component (in contrib)
Peacekeeper: detect RAM corruption due to stack overflows (in /ib)

Stopwatch: tool to measure execution time of code block by timestamping at
entry and exit

Makedoc and graphviz: generate and visualize component hierarchy

Surge, Deluge, SNMS, TinyDB

TinyOS Limitations

Static allocation allows for compile-time analysis, but can make
programming harder

No support for heterogeneity

@ Support for other platforms (e.g. stargate)

@ Support for high data rate apps (e.g. acoustic beamforming)

@ Interoperability with other software frameworks and languages

Limited visibility
@ Debugging

@ Intra-node fault tolerance

Robustness solved in the details of implementation
@ nesC offers only some types of checking

Em*

@ Software environment for sensor networks built from
Linux-class devices

@ Claimed features:
@ Simulation and emulation tools
@ Modular, but not strictly layered architecture
@ Robust, autonomous, remote operation
@ Fault tolerance within node and between nodes
@ Reactivity to dynamics in environment and task

@ High visibility into system: interactive access to all services

Contrasting Emstar and TinyOS

@ Similar design choices

@ programming framework
@ Component-based design
@ “Wiring together” modules into an application

@ event-driven
@ reactive to “sudden” sensor events or triggers

@ Differences

@ hardware platform-dependent constraints
@ Emstar: Develop without optimization
@ TinyOS: Develop under severe resource-constraints

@ operating system and language choices
@ Emstar: easy to use C language, tightly coupled to linux
@ TinyOS: an extended C-compiler (nesC), an OS by itself

Em* Transparently Trades-off Scale vs. Reality

Em™ code runs transparently at many degrees of “reality”:

high visibility debugging before low-visibility deployment

A @ Pure Simulation

O Deployment
o @ Data Replay
=
>
7!
O Ceiling Array
O Portable Array
>

Reality

Other Platforms

@ SOS — UCLA
@ Contiki — Swedish Institute of Computer Science

@ Virtual machines (Maté) —UC Berkeley

Go Back to the Architecture Challenge

We need higher level abstractions!
Why?
@ They let you reason about software at a higher level.

@ They let software interoperate better.
@ Compact
@ Consistent
@ Reuse

And this calls for...

Towards Higher Level Abstractions

@ Better understanding of the applications

@ More efficient and effective algorithms
@ Designing local rules to cause global behavior is hard

The Emerging Networking Abstractions

@ Singer hop communication — active message

@ Multi-hop communication
@ Tree based routing
@ Directed diffusion

@ Broadcast Mechanism vs. policy
@ Epidemic protocols

@ Landmark based routing? ©
@ Power management
@ Time synchronization

Programming Models

@ TinyOS is no fun to program

@ Split-phase operation A logically blocking
sequence must be written in a state-machine style.

@ State Machine Model? (ETH)*
@ Token Machine Model? (MIT)*

* In proceedings of IPSN, 2005

The End

