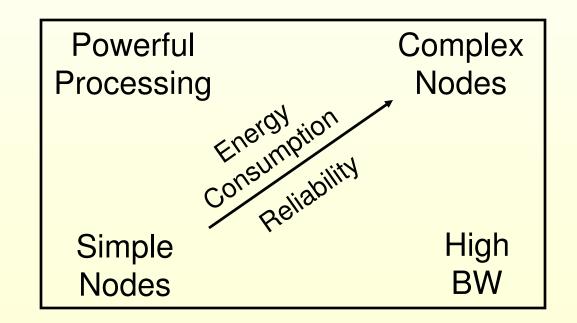

Sensor Network Hardware

Primoz Skraba Stanford University

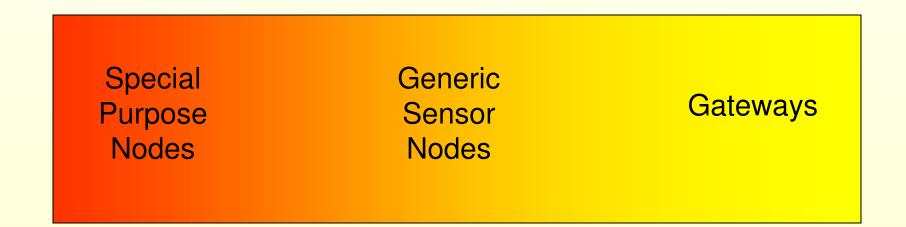

Overview

Introduction

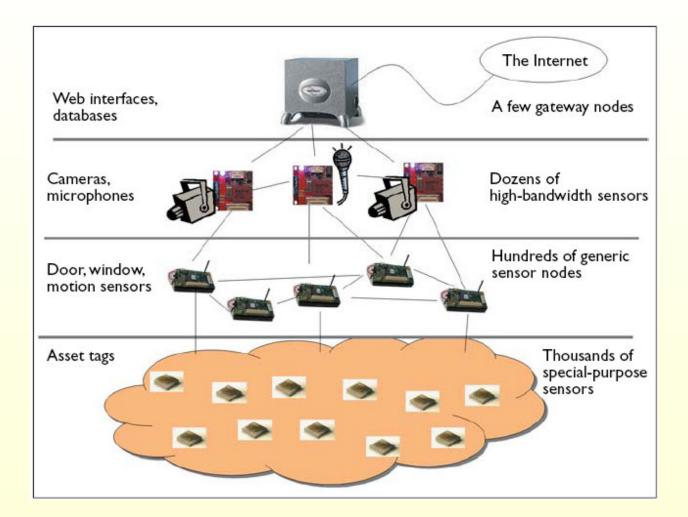
- Classes of Nodes
- Mobile Nodes
- Other Hardware
- Conclusions

Introduction

- A large range of possibilities
- Many design choices
- "Right tool for the job"
- Classification
 - Approximate


Types of Nodes

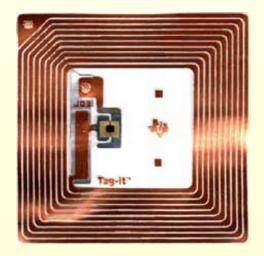
Special purpose nodes


Generic sensor nodes

Wide range of processing/communication capabilities

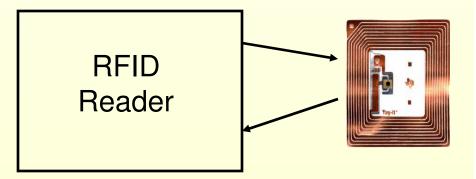
Gateway nodes

Platform Classes


Specifications

Node Type	Sample "Name" and Size	Typical Application Sensors	Radio Bandwidth (Kbps)	MIPS Flash RAM	Typical Active Energy (mW)	Typical Sleep Energy (uW)	Typical Duty Cycle (%)
Specialized	Spec	Specialized low- bandwidth sensor or advanced RF tag	<50Kbps	<5	1.8V*10– 15mA	1.8V *1uA	0.1– 0.5%
sensing platform	mm ³			<0.1Mb			
placionni			1	<4Kb			
Generic	Mote	General-purpose	<100Kbps -	<10	3V*10– 15mA	3V*I0uA	1-2%
sensing	1-10cm ³	sensing and communications relay		<0.5Mb			
platform				<10Kb			
High-	h- Imote High-band		~500Kbps	< 50	3V*60mA	3V*100uA	5-10%
bandwidth sensing	· · · · · · · · · · · · · · · · · · ·	sensing (video, acoustic, and		<10Mb	_		
sensing	1-Toenn	vibration)		<128Kb			
Gateway	Stargate	High-bandwidth	- FOOKL-	<100	3V*200mA	3V *10mA	>50%
Gateway		sensing and	>500Kbs- 10 Mbps	<32Mb			- 30%
	>10cm ³	0cm ³ communications aggregation Gateway node		<512Kb			

Asset Tags


- Highly integrated
- On the order of mm³
- Examples
 - RFID
 - Smart Dust
 - System on Chip SoC

RFID

- Radio Frequency Identification Tag
- Simplest "Sensor Node"
- No batteries
- Uses received RF energy and transmits data
- Limited range
- Application
 - Badges
 - Inventory Management

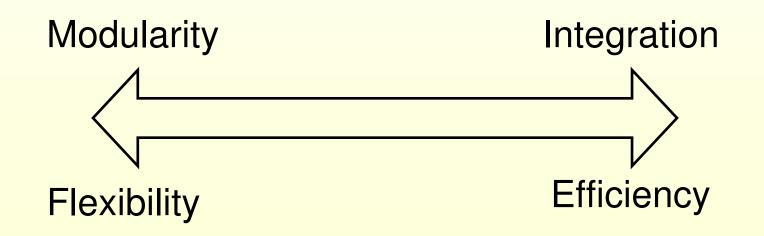
Smart Dust/SoC

 Energy efficiency by placing everything on one chip – custom ASICs

Radio

Processor

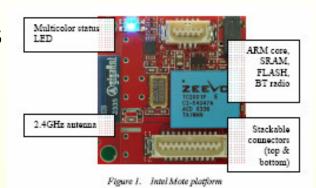
Sensor


Very low energy

Low cost in volume

Potentially thousands of nodes

Generic Sensing Platform


Most active area of research
Stepping stone to Smart Dust
Different levels of integration

Examples

Crossbow

- Mica series
- Dust Motes
- iMotes
- Telos Motes
- Mass Motes
- Particle Motes

Example System

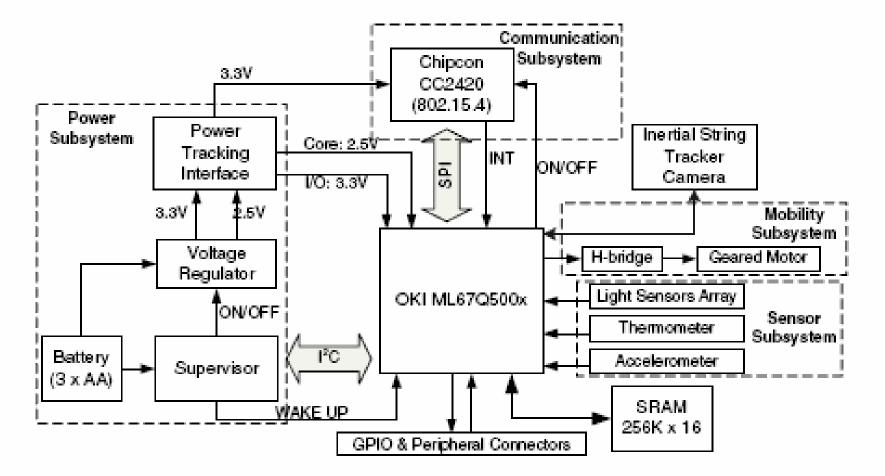


Fig. 3. The XYZ node architecture

MicaZ Motes

TinyOS

- 16 Mhz Atmel ATMega128L
- 128 kB Program FLASH
- 512 kB Serial FLASH
- Current Draw
- 8 mA Active Mode
- <15 uA Sleep Mode</p>
- Chipcon CC2420 802.15.4 Radio
- 250 kbps
- 26 Channels 2.4 Ghz
- Current Draw 15 mA

Range of Capabilities

Highly integrated New Chipcon chips Atmel Processor + 802.15.4 radio Component level integration Processor+radio+sensor interface (SPI, I²C) Stackable architecture Interfaces for radio and sensor interface

Flexibility

Mote Comparisons

Mote Type	WeC	René	René2	Dot	Mica	Mica2Dot	Mica 2	Telos
Year	1998	1999	2000	2000	2001	2002	2002	2004
Microcontroller	Aicrocontroller							
Туре	AT90I	AT90LS8535		ATmega163		ATmega128		
Program memory (KB)		8	10	5		128		48
RAM (KB)	0	.5	1			4		10
Active Power (mW)	1	15	13	5		8	33	3
Sleep Power (µW)	2	45	4	5		75	75	15
Wakeup Time (µs)	10	000	30	5		180	180	6
Nonvolatile storage								
Chip		24L)	C256		2	AT45DB041B		ST M25P80
Connection type		12	² C		SPI			SPI
Size (KB)		3	V2			512	1024	
Communication								
Radio		TR	1000		TR1000	CC10	00	CC2420
Data rate (kbps)		1	0		40	38.4	4	250
Modulation type		0	OK		ASK	SK FSK		O-QPSK
Receive Power (mW)			9		12	29		38
Transmit Power at 0dBm (mW)		3	16		36	42		35
Power Consumption								
Minimum Operation (V)	2	7	2.	7		2.7		1.8
Total Active Power (mW)	1.000	2	24		27	44	89	41
Programming and Sensor Interface								
Expansion	none	51-pin	51-pin	none	51-pin	19-pin	51-pin	16-pin
Communication	IEEE	1284 (pro	gramming	and RS2	232 (require:	s additional ha	rdware)	USB
Integrated Sensors	no	no	no	yes	no	no	no	yes

Fig. 2. The family of Berkeley motes preceeding Telos and their capabilities

Radio Choices

Туре		Na	rowband		Wideband		
Vendor Part no.	RFM TR1000	Chipcon CC1000	Chipcon CC2400	Nordic nRF2401	Chipcon CC2420	Motorola MC13191/92	Zeevo ZV4002
Max Data rate (kbps)	115.2	76.8	1000	1000	250	250	723.2
RX power (mA)	3.8	9.6	24	18 (25)	19.7	37(42)	65
TX power (mA/dBm)	12 / 1.5	16.5 / 10	19/0	13/0	17.4 / 0	34(30)/ 0	65/0
Powerdown power (µA)	1	1	1.5	0.4	1	1	140
Turn on time (ms)	0.02	2	1.13	3	0.58	20	*
Modulation	OOK/ASK	FSK	FSK,GFSK	GFSK	DSSS-O-QPSK	DSSS-O-QPSK	FHSS-GFSK
Packet detection	no	no	programmable	yes	yes	yes	yes
Address decoding	no	no	no	yes	yes	yes	yes
Encryption support	no	no	no	no	128-bit AES	no	128-bit SC
Error detection	no	no	yes	yes	yes	yes	yes
Error correction	no	no	no	no	yes	yes	yes
Acknowledgments	no	no	no	no	yes	yes	yes
Interface	bit	byte	packet/byte	packet/byte	packet/byte	packet/byte	packet
Buffering (bytes)	no	1	32	16	128	133	yes *
Time-sync	bit	SFD/byte	SFD/packet	packet	SFD	SFD	Bluetooth
Localization	RSSI	RSSI	RSSI	no	RSSI/LQI	RSSI/LQI	RSSI

* Manufacturer's documentation does not include additional information.

Fig. 3. Capabilities of current COTS radios suitable for WSNs, their features, and power profile.

Processor Choices

Manufacturer	Device	RAM (kB)	Flash (kB)	Active (mA)	Sleep (µA)	Release
Atmel	AT90LS8535	0.5	8	5	15	1998
	Mega128	4	128	8	20	2001
	Mega165/325/645	4	64	2.5	2	2004
General Instruments	PIC	0.025	0.5	19	1	1975
Microchip	PIC Modern	4	128	2.2	1	2002
Intel	4004 4-bit	0.625	4	30	N/A	1971
	8051 8-bit Classic	0.5	32	30	5	1995
	8051 16-bit	1	16	45	10	1996
Philips	80C51 16-bit	2	60	15	3	2000
Motorola	HC05	0.5	32	6.6	90	1988
	HC08	2	32	8	100	1993
	HCS08	4	60	6.5	1	2003
Texas	TSS400 4-bit	0.03	1	15	12	1974
Instruments	MSP430F14x 16-bit	2	60	1.5	1	2000
	MSP430F16x 16-bit	10	48	2	1	2004
Atmel	AT91 ARM Thumb	256	1024	38	160	2004
Intel	XScale PXA27X	256	N/A	39	574	2004

Power Costs

Operation	Telos	Mica2	MicaZ
Minimum Voltage	1.8V	2.7V	2.7V
Mote Standby (RTC on)	5.1 µA	19.0 μA	27.0 µA
MCU Idle (DCO on)	54.5 μA	3.2 mA	3.2 mA
MCU Active	1.8 mA	8.0 mA	8.0 mA
MCU + Radio RX	21.8 mA	15.1 mA	23.3 mA
MCU + Radio TX (0dBm)	19.5 mA	25.4 mA	21.0 mA
MCU + Flash Read	4.1 mA	9.4 mA	9.4 mA
MCU + Flash Write	15.1 mA	21.6 mA	21.6 mA
MCU Wakeup	6 µs	180 μ s	$180 \ \mu s$
Radio Wakeup	580 μ s	1800 μ s	860 μ s

Memory

- How much?
- Internal or external?
- How long is storage required?
- Permanent memory
 - More energy consumption
 - In network reprogramming
- Temporary memory
 - Does not last as long

High Bandwidth Sensing

- More complex sensors
 - Audio
 - Video
- Requires
 - More processing power
 - More bandwidth
- Motivation
 - More interesting applications

Sensor Examples

Audio

Microphones

Images

Cameras

Video

Multiple images

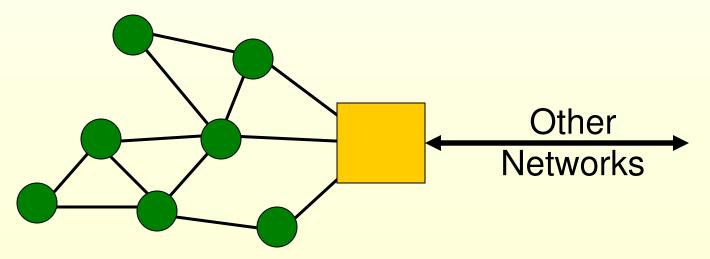
Interfaces

 Must be sufficiently fast

Sensor	Sampling Range	Bit rate
Audio	4 – 128 kHz	~10 kbps
Image	64 - 320000 pix/imag	~10 kbpp
Video	1 – 30 frames/sec	~1 Mbps

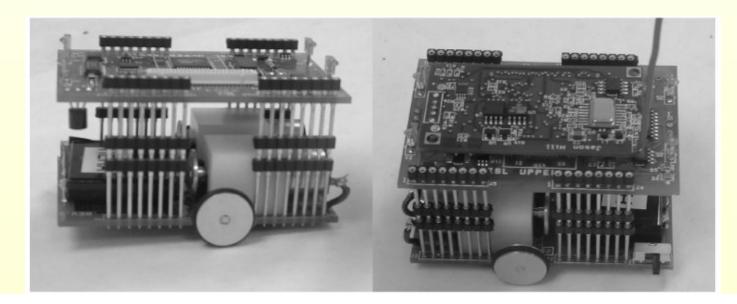
Applications

Surveillance/Security
Cameras have traditionally been used
Consumer Applications
People like Audio/Video
Higher level processing
Face recognition
Deeper understanding of environment - AI


Gateways

- Miniature PCs
- Connection to Internet
- Can have multiple radios
- Stargate
- Embedded Linux

- When does a high BW node become a gateway?
- Placement
 - Gateway connected to other networks
 - High power nodes within the sensor network



Summary

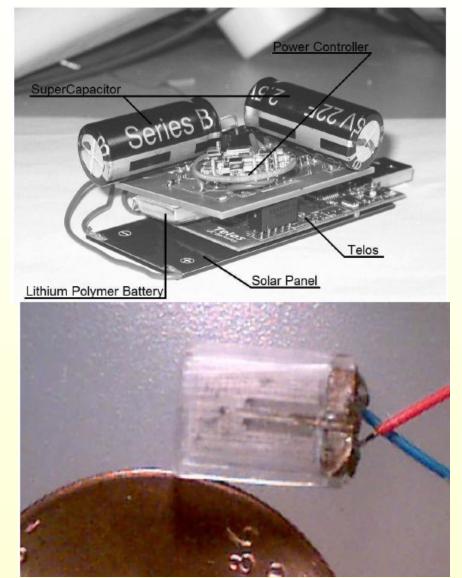
Node	CPU	Power	Memory	I/O and Sensors	Radio	Remarks
			Special-purp	oose Sensor Nod	68	
Spec 2003	4-8Mite Oustom 8-bit	3mWV peak 3uWV Idle	3K RAM	VO Pads on chip, ADC	50—1 00 Kbps	Full custom silicon, traded R.F. range and accuracy for low-power operation.
anna a			Generic	Sensor Nodes		
Rane 1999	ATMEL 8535	.035mWV sleep 60mWV active	SI 28 RAM BK Flash	Large expansion connector	Таюра	Primary TinyOS development platform.
Mica-2 2001	ATMEGA 128	.036mWV skeep 60mWV active	4K RAM 128K Flash	Large expansion connector	76Kbps	Primary TinyOS development platform.
Telos 2004	Motorola HCS08	.001 m//V sleep 32m//V active	4K RAM	USB and Ethernet	250Kbps	Supports IEEE 802. IS A standard. Allows higher- layer Zigbee standard. I.8V operation
Maa-Z 2004	ATMEGA 128		4K RAM 128K Flash	Large expansion connector	250Kbps	Supports IEEE 802. IS.4 standard. Allows higher- layer Zigbee standard.
			High-bandw	idth Sensor Nod	es -	
BT Node 2001	ATMEL Mega 128L 7.326Mhz	SOMW Idle 285MW active	128KB Flash 4KB EEPROM 4KB SRAM	8-channel 10-bit AID, 2 UARTS Expandable connectors	Bluetooth	Easy connectivity with cell phones. Supports TinyCIS. Multihop using multiple radios/nodes.
Imote 1.0 2003	ARH 7TDMI 12- 49MHz	imiw Idle 120miw active	64KB SRAM SI 2KB Flash	UART, USB, GPIQ, I ² C, SPI	Bluetooth I.I	Multihop using scatternets, easy connections to PEAs, phones, TinyOS 1.0, 1.1.
			Gate	way Nodes		
Stargate 2003	intel PXA255		64KNSRM	2 PCMICA/CF, com ports, Ethernet, USB	Sarbi	Flexible I/O and small form factor power management.
inrysne Ceribuba 2003	intal PXA255		32KB Flash 64KB SRAM	Single CF card, senenal-purpose NO	connection to sensor network	Small form factor, robust industrial support, Linux and Windows CE support.
PC104 nodes	X 86 processor		32KB Flish 64KB SRAM	PCI Bus		Embedded Linux or Windows support.

Mobile Nodes

- Sensor mote on wheels
- Robotics
 - Range of sizes
 - Distributed robotics/telerobotics
- Newest work in very small mobile motes

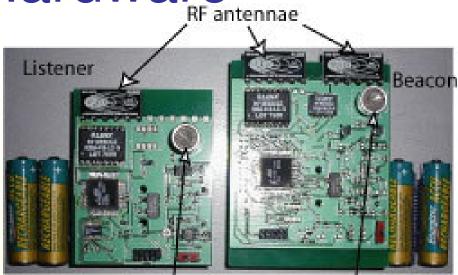
Other Mobile Nodes

Other mediums

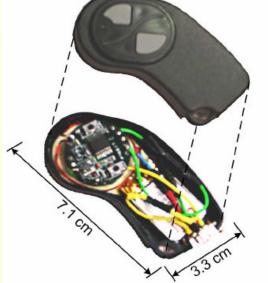

- Aircraft
- Underwater schools of motes
- Ground motes
- Larger "nodes" UAV's
- Fewer nodes
- Energy less of an issue
 - Physical movement overshadows communication costs

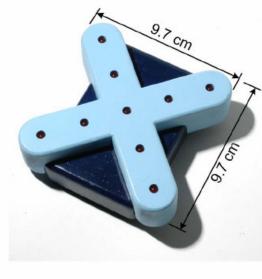
Energy Harvesting/Scavenging

- Extend lifetime
- Solar Cells
 - Size
 - Efficiency
 - Availability of light source
- Kinetic Energy
 - Sporadic
 - Low yield
 - Consistent vibrations



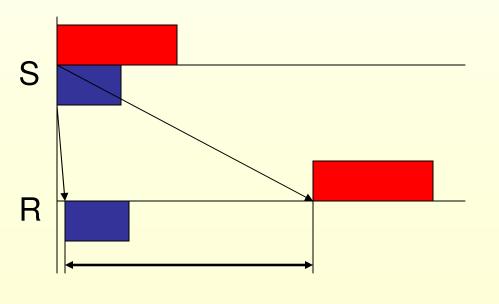
Energy Sources


Comparison of Energy Scavenging Sources							
	Power Density (μW/cm³) 1Year lifetime	Power Density (μW/cm ³) 10 Year lifetime	Source of information				
Solar (Outdoors)	15,000 - direct sun 150 - cloudy day	15,000 - direct sun 150 - cloudy day	Commonly Available				
Solar (Indoors)	6 - office desk	6 - office desk	Experiment				
Vibrations	100 - 200	100 - 200	Experiment and Theory				
Acoustic Noise	0.003 @ 75 Db 0.96 @ 100 Db	0.003 @ 75 Db 0.96 @ 100 Db	Theory				
Daily Temp. Variation	10	10	Theory				
Temperature Gradient	15 @ 10 °C gradient	15 @ 10 °C gradient	1997				
Shoe Inserts	330	330	Starner 1996 Shenck & Paradiso 2001				
Batteries (non-recharg. Lithium)	89	7	Commonly Available				
Batteries (rechargeable Lithium)	13.7	0	Commonly Available				
Gasoline (micro heat engine)	403	40.3	Mehra et. al. 2000				
Fuel Cells (methanol)	560	56	Commonly Available				


Extra Hardware

- CRICKET
 GPS
 RFID Reader
- Structural Monitoring Sensor/Actuator

¹Ultrasound sensors



CRICKET

- Ranging system
- Ultrasonic + Radio
- Benefits
 - Accurate
 - Simple Processing
- Drawbacks
 - Limited range ~10 m
 - Not low power

Conclusions

- Many different platforms
- Different capabilities
- Design choices motivated by algorithm
- Hardware get smaller, cheaper, etc.
- Battery size becomes limitation
- Hardware will not provide complete solution

Platform References

XYZ: A Motion-Enabled, Power Aware Sensor Node Platform for Distributed Sensor Network Applications http://www.eng.yale.edu/enalab/XYZ/

Multi-target Tracking System using Ultrasonic Sensor Network http://www.i2r.a-star.edu.sg/ni/cdip/TrackingTestbed.htm

Avrora: Scalable Sensor Network Simulation with Precise Timing http://compilers.cs.ucla.edu/avrora/

The Intel Mote Platform: A Bluetooth based sensor network for industrial monitoring applications http://www.intel.com/research/exploratory/motes.htm An Implementation and Evaluation of Bluetooth for Sensor Network Communication http://cmclab.rice.edu/projects/sensors/

SESAME: A SEnsor System Accessing and Monitoring Environment http://mist.cs.wayne.edu/spirit/spirit.html

Sound-source Localization in Low-power Sensor Networks http://cmclab.rice.edu/projects/sensors/soundsource/

Language Support for Messaging in Heterogeneous Networks http://nescc.sourceforge.net/networktypes/index.html

Design Considerations for Solar Energy Harvesting Wireless Embedded Systems http://deerhound.ats.ucla.edu:7777/portal/page?_pageid=54,278286,54 _278287:54_278290&_dad=portal&_schema=PORTAL&_calledfrom =2 Experiences In Building a Wireless Sensor Network Emulator for Application Performance Evaluation http://www.cs.ust.hk/vmnet/

The Particle Computer System http://particle.teco.edu/

The SensorNet Node: Last-Mile Platform for Sensor Networks Interoperability http://www.sensornet.gov/sn_briefing.html

Implementation and evaluation of miniaturised wearable sensor networks http://www.ife.ee.ethz.ch/%7Ejr/WSN.html

Reconfigurable Time-Triggered Embedded Fieldbus Systems http://www.vmars.tuwien.ac.at/ttpa/ Networked Infomechanical Systems: A Mobile Wireless Sensor Network Platform http://deerhound.ats.ucla.edu:7777/portal/page?_pageid=54,107513,54 _107514&_dad=portal&_schema=PORTAL

TOSHILT: Middleware for Hardware-In-the-Loop Testing of Wireless Sensor Networks http://www.ece.cmu.edu/~webk/sensor networks/toshilt/

MoteLab: A Wireless Sensor Network Testbed http://motelab.eecs.harvard.edu/

NODES: A Novel System Design for Embedded Sensor Systems http://www.cs.ucr.edu/%7Esneema/nodes/

The Design and Evaluation of a Hybrid Sensor Network For Cane-toad Monitoring http://www.cse.unsw.edu.au/%7Esensar/research/projects/cane-toads/ Some Sensor Network Elements for Ubiquitous Computing http://www.cs.washington.edu/homes/wrb/ubidevices/

A low cost architecture with high connectivity for control systems http://www.disca.upv.es/amarti/taronja/taronja.html

MASS: Modular Architecture for Sensor Systems http://eri.ca.sandia.gov/

A Modular Power-Aware Microsensor with >1000X Dynamic Power Range http://pasta.east.isi.edu/

Tython: A Dynamic Simulation Environment for Wireless Sensor Networks http://www.tinyos.net/tinyos-1.x/doc/tython/tython.html

Robomote: Enabling mobility in sensor networks http://www-robotics.usc.edu/%7Erobomote/ A Platform for Collaborative Acoustic Signal Processing http://lecs.cs.ucla.edu/%7Ehbwang/SPOTS/acoustic.htm

A Compact Modular Wireless Sensor Platform http://www.media.mit.edu/resenv/Stack/

Experiences and Directions in Pushpin Computing http://web.media.mit.edu/%7Elifton/Pushpin/

eBlocks - An Enabling Technology for Basic Sensor Based Systems http://www.cs.ucr.edu/~eblock/