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ABSTRACT
In many sensor networks, data or events are named by at-
tributes. Many of these attributes have scalar values, so one
natural way to query events of interest is to use a multi-
dimensional range query. An example is: “List all events
whose temperature lies between 50◦ and 60◦, and whose
light levels lie between 10 and 15.” Such queries are useful
for correlating events occurring within the network.
In this paper, we describe the design of a distributed in-

dex that scalably supports multi-dimensional range queries.
Our distributed index for multi-dimensional data (or DIM)
uses a novel geographic embedding of a classical index data
structure, and is built upon the GPSR geographic routing
algorithm. Our analysis reveals that, under reasonable as-
sumptions about query distributions, DIMs scale quite well
with network size (both insertion and query costs scale as

O(
√

N)). In detailed simulations, we show that in practice,
the insertion and query costs of other alternatives are some-
times an order of magnitude more than the costs of DIMs,
even for moderately sized network. Finally, experiments on
a small scale testbed validate the feasibility of DIMs.
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1. INTRODUCTION
In wireless sensor networks, data or events will be named

by attributes [15] or represented as virtual relations in a
distributed database [18, 3]. Many of these attributes will
have scalar values: e.g., temperature and light levels, soil
moisture conditions, etc. In these systems, we argue, one
natural way to query for events of interest will be to use
multi-dimensional range queries on these attributes. For
example, scientists analyzing the growth of marine micro-
organisms might be interested in events that occurred within
certain temperature and light conditions: “List all events
that have temperatures between 50◦F and 60◦F, and light
levels between 10 and 20”.
Such range queries can be used in two distinct ways. They

can help users efficiently drill-down their search for events of
interest. The query described above illustrates this, where
the scientist is presumably interested in discovering, and
perhaps mapping the combined effect of temperature and
light on the growth of marine micro-organisms. More im-
portantly, they can be used by application software running
within a sensor network for correlating events and triggering
actions. For example, if in a habitat monitoring application,
a bird alighting on its nest is indicated by a certain range
of thermopile sensor readings, and a certain range of micro-
phone readings, a multi-dimensional range query on those
attributes enables higher confidence detection of the arrival
of a flock of birds, and can trigger a system of cameras.
In traditional database systems, such range queries are

supported using pre-computed indices. Indices trade-off some
initial pre-computation cost to achieve a significantly more
efficient querying capability. For sensor networks, we as-
sert that a centralized index for multi-dimensional range
queries may not be feasible for energy-efficiency reasons (as
well as the fact that the access bandwidth to this central
index will be limited, particularly for queries emanating
from within the network). Rather, we believe, there will
be situations when it is more appropriate to build an in-
network distributed data structure for efficiently answering
multi-dimensional range queries.
In this paper, we present just such a data structure, that

we call a DIM1. DIMs are inspired by classical database in-
dices, and are essentially embeddings of such indices within
the sensor network. DIMs leverage two key ideas: in-network

1Distributed Index for Multi-dimensional data.
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data centric storage, and a novel locality-preserving geo-
graphic hash (Section 3). DIMs trace their lineage to data-
centric storage systems [23]. The underlying mechanism in
these systems allows nodes to consistently hash an event to
some location within the network, which allows efficient re-
trieval of events. Building upon this, DIMs use a technique
whereby events whose attribute values are “close” are likely
to be stored at the same or nearby nodes. DIMs then use
an underlying geographic routing algorithm (GPSR [16]) to
route events and queries to their corresponding nodes in an
entirely distributed fashion.
We discuss the design of a DIM, presenting algorithms for

event insertion and querying, for maintaining a DIM in the
event of node failure, and for making DIMs robust to data or
packet loss (Section 3). We then extensively evaluate DIMs
using analysis (Section 4), simulation (Section 5), and actual
implementation (Section 6). Our analysis reveals that, un-
der reasonable assumptions about query distributions, DIMs
scale quite well with network size (both insertion and query

costs scale as O(
√

N)). In detailed simulations, we show
that in practice, the event insertion and querying costs of
other alternatives are sometimes an order of magnitude the
costs of DIMs, even for moderately sized network. Exper-
iments on a small scale testbed validate the feasibility of
DIMs (Section 6). Much work remains, including efficient
support for skewed data distributions, existential queries,
and node heterogeneity.
We believe that DIMs will be an essential, but perhaps

not necessarily the only, distributed data structure support-
ing efficient queries in sensor networks. DIMs will be part
of a suite of such systems that enable feature extraction [7],
simple range querying [10], exact-match queries [23], or con-
tinuous queries [15, 18]. All such systems will likely be
integrated to a sensor network database system such as
TinyDB [17]. Application designers could then choose the
appropriate method of information access. For instance,
a fire tracking application would use DIM to detect the
hotspots, and would then use mechanisms that enable con-
tinuous queries [15, 18] to track the spatio-temporal progress
of the hotspots. Finally, we note that DIMs are applicable
not just to sensor networks, but to other deeply distributed
systems (embedded networks for home and factory automa-
tion) as well.

2. RELATED WORK
The basic problem that this paper addresses — multi-

dimensional range queries — is typically solved in database
systems using indexing techniques. The database commu-
nity has focused mostly on centralized indices, but distributed
indexing has received some attention in the literature.
Indexing techniques essentially trade-off some data inser-

tion cost to enable efficient querying. Indexing has, for long,
been a classical research problem in the database commu-
nity [5, 2]. Our work draws its inspiration from the class
of multi-key constant branching index structures, exempli-
fied by k-d trees [2], where k represents the dimensionality
of the data space. Our approach essentially represents a
geographic embedding of such structures in a sensor field.
There is one important difference. The classical indexing
structures are data-dependent (as are some indexing schemes
that use locality preserving hashes, and developed in the
theory literature [14, 8, 13]). The index structure is decided
not only by the data, but also by the order in which data

is inserted. Our current design is not data dependent. Fi-
nally, tangentially related to our work is the class of spatial
indexing systems [21, 6, 11].
While there has been some work on distributed indexing,

the problem has not been extensively explored. There ex-
ist distributed indices of a restricted kind—those that allow
exact match or partial prefix match queries. Examples of
such systems, of course, are the Internet Domain Name Sys-
tem, and the class of distributed hash table (DHT) systems
exemplified by Freenet[4], Chord[24], and CAN[19]. Our
work is superficially similar to CAN in that both construct
a zone-based overlay atop of the underlying physical net-
work. The underlying details make the two systems very
different: CAN’s overlay is purely logical while our overlay
is consistent with the underlying physical topology. More
recent work in the Internet context has addressed support
for range queries in DHT systems [1, 12], but it is unclear if
these directly translate to the sensor network context.
Several research efforts have expressed the vision of a

database interface to sensor networks [9, 3, 18], and there
are examples of systems that contribute to this vision [18,
3, 17]. Our work is similar in spirit to this body of litera-
ture. In fact, DIMs could become an important component
of a sensor network database system such as TinyDB [17].
Our work departs from prior work in this area in two signifi-
cant respects. Unlike these approaches, in our work the data
generated at a node are hashed (in general) to different loca-
tions. This hashing is the key to scaling multi-dimensional
range searches. In all the other systems described above,
queries are flooded throughout the network, and can dom-
inate the total cost of the system. Our work avoids query
flooding by an appropriate choice of hashing. Madden et
al. [17] also describe a distributed index, called Semantic
Routing Trees (SRT). This index is used to direct queries
to nodes that have detected relevant data. Our work dif-
fers from SRT in three key aspects. First, SRT is built on
single attributes while DIM supports mulitple attributes.
Second, SRT constructs a routing tree based on historical
sensor readings, and therefore works well only for slowly-
changing sensor values. Finally, in SRT queries are issued
from a fixed node while in DIM queries can be issued from
any node.
A similar differentiation applies with respect to work on

data-centric routing in sensor networks [15, 25], where data
generated at a node is assumed to be stored at the node,
and queries are either flooded throughout the network [15],
or each source sets up a network-wide overlay announcing its
presence so that mobile sinks can rendezvous with sources
at the nearest node on the overlay [25]. These approaches
work well for relatively long-lived queries.
Finally, our work is most close related to data-centric

storage [23] systems, which include geographic hash-tables
(GHTs) [20], DIMENSIONS [7], and DIFS [10].In a GHT,
data is hashed by name to a location within the network, en-
abling highly efficient rendezvous. GHTs are built upon the
GPSR [16] protocol and leverage some interesting properties
of that protocol, such as the ability to route to a node nearest
to a given location. We also leverage properties in GPSR (as
we describe later), but we use a locality-preserving hash to
store data, enabling efficient multi-dimensional range queries.
DIMENSIONS and DIFS can be thought of as using the
same set of primitives as GHT (storage using consistent
hashing), but for different ends: DIMENSIONS allows drill-
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down search for features within a sensor network, while
DIFS allows range queries on a single key in addition to
other operations.

3. THE DESIGN OF DIMS
Most sensor networks are deployed to collect data from

the environment. In these networks, nodes (either indi-
vidually or collaboratively) will generate events. An event
can generally be described as a tuple of attribute values,
〈A1, A2, · · · , Ak〉, where each attribute Ai represents a sen-
sor reading, or some value corresponding to a detection
(e.g., a confidence level). The focus of this paper is the de-
sign of systems to efficiently answer multi-dimensional range
queries of the form: 〈x1 − y1, x2 − y2, · · · , xk − yk〉. Such a
query returns all events whose attribute values fall into the
corresponding ranges. Notice that point queries, i.e., queries
that ask for events with specified values for each attribute,
are a special case of range queries.
As we have discussed in Section 1, range queries can en-

able efficient correlation and triggering within the network.
It is possible to implement range queries by flooding a query
within the network. However, as we show in later sections,
this alternative can be inefficient, particularly as the system
scales, and if nodes within the network issue such queries rel-
atively frequently. The other alternative, sending all events
to an external storage node results in the access link being
a bottleneck, especially if nodes within the network issue
queries. Shenker et al. [23] also make similar arguments with
respect to data-centric storage schemes in general; DIMs are
an instance of such schemes.
The system we present in this paper, the DIM, relies upon

two foundations: a locality-preserving geographic hash, and
an underlying geographic routing scheme.
The key to resolving range queries efficiently is data local-

ity : i.e., events with comparable attribute values are stored
nearby. The basic insight underlying DIM is that data lo-
cality can be obtained by a locality-preserving geographic
hash function. Our geographic hash function finds a locality-
preserving mapping from the multi-dimensional space (de-
scribed by the set of attributes) to a 2-d geographic space;
this mapping is inspired by k -d trees [2] and is described
later. Moreover, each node in the network self-organizes
to claim part of the attribute space for itself (we say that
each node owns a zone), so events falling into that space are
routed to and stored at that node.
Having established the mapping, and the zone structure,

DIMs use a geographic routing algorithm previously devel-
oped in the literature to route events to their corresponding
nodes, or to resolve queries. This algorithm, GPSR [16],
essentially enables the delivery of a packet to a node at a
specified location. The routing mechanism is simple: when
a node receives a packet destined to a node at location X, it
forwards the packet to the neighbor closest to X. In GPSR,
this is called greedy-mode forwarding. When no such neigh-
bor exists (as when there exists a void in the network), the
node starts the packet on a perimeter mode traversal, us-
ing the well known right-hand rule to circumnavigate voids.
GPSR includes efficient techniques for perimeter traversal
that are based on graph planarization algorithms amenable
to distributed implementation.
For all of this to work, DIMs make two assumptions that

are consistent with the literature [23]. First, all nodes know
the approximate geographic boundaries of the network. These

boundaries may either be configured in nodes at the time of
deployment, or may be discovered using a simple protocol.
Second, each node knows its geographic location. Node lo-
cations can be automatically determined by a localization
system or by other means.
Although the basic idea of DIMs may seem straightfor-

ward, it is challenging to design a completely distributed
data structure that must be robust to packet losses and
node failures, yet must support efficient query distribution
and deal with communication voids and obstacles. We now
describe the complete design of DIMs.

3.1 Zones
The key idea behind DIMs, as we have discussed, is a geo-

graphic locality-preserving hash that maps a multi-attribute
event to a geographic zone. Intuitively, a zone is a sub-
division of the geographic extent of a sensor field.
A zone is defined by the following constructive procedure.

Consider a rectangle R on the x-y plane. Intuitively, R is
the bounding rectangle that contains all sensors withing the
network. We call a sub-rectangle Z of R a zone, if Z is
obtained by dividing R k times, k ≥ 0, using a procedure
that satisfies the following property:

After the i-th division, 0 ≤ i ≤ k, R is parti-
tioned into 2i equal sized rectangles. If i is an
odd (even) number, the i-th division is parallel
to the y-axis (x-axis).

That is, the bounding rectangle R is first sub-divided into
two zones at level 0 by a vertical line that splits R into two
equal pieces, each of these sub-zones can be split into two
zones at level 1 by a horizontal line, and so on. We call the
non-negative integer k the level of zone Z, i.e. level(Z) = k.
A zone can be identified either by a zone code code(Z)

or by an address addr(Z). The code code(Z) is a 0-1 bit
string of length level(Z), and is defined as follows. If Z lies
in the left half of R, the first (from the left) bit of code(Z)
is 0, else 1. If Z lies in the bottom half of R, the second
bit of code(Z) is 0, else 1. The remaining bits of code(Z)
are then recursively defined on each of the four quadrants of
R. This definition of the zone code matches the definition
of zones given above, encoding divisions of the sensor field
geography by bit strings. Thus, in Figure 2, the zone in the
top-right corner of the rectangle R has a zone code of 1111.
Note that the zone codes collectively define a zone tree such
that individual zones are at the leaves of this tree.
The address of a zone Z, addr(Z), is defined to be the cen-

troid of the rectangle defined by Z. The two representations
of a zone (its code and its address) can each be computed
from the other, assuming the level of the zone is known.
Two zones are called sibling zones if their zone codes are

the same except for the last bit. For example, if code(Z1) =
01101 and code(Z2) = 01100, then Z1 and Z2 are sibling
zones. The sibling subtree of a zone is the subtree rooted
at the left or right sibling of the zone in the zone tree. We
uniquely define a backup zone for each zone as follows: if
the sibling subtree of the zone is on the left, the backup
zone is the right-most zone in the sibling subtree; other-
wise, the backup zone is the left-most zone in the sibling
subtree. For a zone Z, let p be the first level(Z) − 1 digits
of code(Z). Let backup(Z) be the backup zone of zone Z.
If code(Z) = p1, code(backup(Z)) = p01∗ with the most
number of trailing 1’s (∗ means 0 or 1 occurrences). If
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code(Z) = p0, code(backup(Z)) = p10∗ with the most num-
ber of trailing 0’s.

3.2 Associating Zones with Nodes
Our definition of a zone is independent of the actual dis-

tribution of nodes in the sensor field, and only depends upon
the geographic extent (the bounding rectangle) of the sensor
field. Now we describe how zones are mapped to nodes.
Conceptually, the sensor field is logically divided into zones

and each zone is assigned to a single node. If the sensor net-
work were deployed in a grid-like (i.e., very regular) fashion,
then it is easy to see that there exists a k such that each
node maps into a distinct level-k zone. In general, however,
the node placements within a sensor field are likely to be less
regular than the grid. For some k, some zones may be empty
and other zones might have more than one node situated
within them. One alternative would have been to choose
a fixed k for the overall system, and then associate nodes
with the zones they are in (and if a zone is empty, associate
the “nearest” node with it, for some definition of “nearest”).
Because it makes our overall query routing system simpler,
we allow nodes in a DIM to map to different-sized zones.
To precisely understand the associations between zones

and nodes, we define the notion of zone ownership. For any
given placement of network nodes, consider a node A. Let
ZA to be the largest zone that includes only node A and no
other node. Then, we say that A owns ZA. Notice that this
definition of ownership may leave some sections of the sensor
field un-associated with a node. For example, in Figure 2,
the zone 110 does not contain any nodes and would not have
an owner. To remedy this, for any empty zone Z, we define
the owner to be the owner of backup(Z). In our example,
that empty zone’s owner would also be the node that owns
1110, its backup zone.
Having defined the association between nodes and zones,

the next problem we tackle is: given a node placement, does
there exist a distributed algorithm that enables each node
to determine which zones it owns, knowing only the overall
boundary of the sensor network? In principle, this should
be relatively straightforward, since each node can simply
determine the location of its neighbors, and apply simple
geometric methods to determine the largest zone around it
such that no other node resides in that zone. In practice,
however, communication voids and obstacles make the algo-
rithm much more challenging. In particular, resolving the
ownership of zones that do not contain any nodes is com-
plicated. Equally complicated is the case where the zone
of a node is larger than its communication radius and the
node cannot determine the boundaries of its zone by local
communication alone.
Our distributed zone building algorithm defers the reso-

lution of such zones until when either a query is initiated, or
when an event is inserted. The basic idea behind our algo-
rithm is that each node tentatively builds up an idea of the
zone it resides in just by communicating with its neighbors
(remembering which boundaries of the zone are “undecided”
because there is no radio neighbor that can help resolve that
boundary). These undecided boundaries are later resolved
by a GPSR perimeter traversal when data messages are ac-
tually routed.
We now describe the algorithm, and illustrate it using ex-

amples. In our algorithm, each node uses an array bound[0..3]
to maintain the four boundaries of the zone it owns (remem-

Figure 1: A network, where circles represent sensor

nodes and dashed lines mark the network boundary.
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Figure 2: The zone code and boundaries.
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10

00

Figure 3: The Corresponding Zone Tree

ber that in this algorithm, the node only tries to determine
the zone it resides in, not the other zones it might own
because those zones are devoid of nodes). When a node
starts up, each node initializes this array to be the network
boundary, i.e., initially each node assumes its zone contains
the whole network. The zone boundary algorithm now re-
lies upon GPSR’s beacon messages to learn the locations of
neighbors within radio range. Upon hearing of such a neigh-
bor, the node calls the algorithm in Figure 4 to update its
zone boundaries and its code accordingly. In this algorithm,
we assume that A is the node at which the algorithm is ex-
ecuted, ZA is its zone, and a is a newly discovered neighbor
of A. (Procedure Contain(ZA, a) is used to decide if node
a is located within the current zone boundaries of node A).
Using this algorithm, then, each node can independently

and asynchronously decide its own tentative zone based on
the location of its neighbors. Figure 2 illustrates the results
of applying this algorithm for the network in Figure 1.
Figure 3 describes the corresponding zone tree. Each zone

resides at a leaf node and the code of a zone is the path from
the root to the zone if we represent the branch to the left
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Build-Zone(a)
1 while Contain(ZA, a)
2 do if length(code(ZA)) mod 2 = 0
3 then new bound← (bound[0] + bound[1])/2
4 if A.x < new bound
5 then bound[1]← new bound
6 else bound[0]← new bound
7 else new bound← (bound[2] + bound[3])/2
8 if A.y < new bound
9 then bound[3]← new bound

10 else bound[2]← new bound
11 Update zone code code(ZA)

Figure 4: Zone Boundary Determination, where A.x

and A.y represent the geographic coordinate of node

A.

Insert-Event(e)
1 c← Encode(e)
2 if Contain(ZA, c) = true and is Internal() = true
3 then Store e and exit
4 Send-Message(c, e)

Send-Message(c, m)
1 if ∃ neighbor Y, Closer(Y, owner(m), m) = true
2 then addr(m)← addr(Y )
3 else if length(c) > length(code(m))
4 then Update code(m) and addr(m)
5 source(m)← caller
6 if is Owner(msg) = true
7 then owner(m)← caller’s code
8 Send(m)

Figure 5: Inserting an event in a DIM. Procedure

Closer(A, B, m) returns true if code(A) is closer to

code(m) than code(B). source(m) is used to set the source

address of message m.

child by 0 and the branch to the right child by 1. This binary
tree forms the index that we will use in the following event
and query processing procedures.
We see that the zone sizes are different and depend on

the local densities and so are the lengths of zone codes for
different nodes. Notice that in Figure 2, there is an empty
zone whose code should be 110. In this case, if the node in
zone 1111 can only hear the node in zone 1110, it sets its
boundary with the empty zone to undecided, because it did
not hear from any neighboring nodes from that direction.
As we have mentioned before, the undecided boundaries are
resolved using GPSR’s perimeter mode when an event is
inserted, or a query sent. We describe event insertion in the
next step.
Finally, this description does not describe how a node’s

zone codes are adjusted when neighboring nodes fail, or new
nodes come up. We return to this in Section 3.5.

3.3 Inserting an Event
In this section, we describe how events are inserted into

a DIM. There are two algorithms of interest: a consistent
hashing technique for mapping an event to a zone, and a
routing algorithm for storing the event at the appropriate
zone. As we shall see, these two algorithms are inter-related.

3.3.1 Hashing an Event to a Zone
In Section 3.1, we described a recursive tessellation of

the geographic extent of a sensor field. We now describe

a consistent hashing scheme for a DIM that supports range
queries on m distinct attributes2

Let us denote these attributes A1 . . . Am. For simplicity,
assume for now that the depth of every zone in the network
is k, k is a multiple of m, and that this value of k is known
to every node. We will relax this assumption shortly. Fur-
thermore, for ease of discussion, we assume that all attribute
values have been normalized to be between 0 and 1.
Our hashing scheme assigns a k bit zone code to an event

as follows. For i between 1 and m, if Ai < 0.5, the i-th
bit of the zone code is assigned 0, else 1. For i between
m + 1 and 2m, if Ai−m < 0.25 or Ai−m ∈ [0.5, 0.75), the
i-th bit of the zone is assigned 0, else 1, because the next
level divisions are at 0.25 and 0.75 which divide the ranges
to [0, 0.25), [0.25, 0.5), [0.5, 0.75), and [0.75, 1). We repeat
this procedure until all k bits have been assigned. As an
example, consider event E = 〈0.3, 0.8〉. For this event, the
5-bit zone code is code(ZA) = 01110.
Essentially, our hashing scheme uses the values of the at-

tributes in round-robin fashion on the zone tree (such as
the one in Figure 3), in order to map an m-attribute event
to a zone code. This is reminiscent of k-d trees [2], but
is quite different from that data structure: zone trees are
spatial embeddings and do not incorporate the re-balancing
algorithms in k-d trees.
In our design of DIMs, we do not require nodes to have

zone codes of the same length, nor do we expect a node to
know the zone codes of other nodes. Rather, suppose the
encoding node is A and its own zone code is of length kA.
Then, given an event E, node A only hashes E to a zone
code of length kA. We denote the zone code assigned to an
event E by code(E). As we describe below, as the event is
routed, code(E) is refined by intermediate nodes. This lazy
evaluation of zone codes allows different nodes to use differ-
ent length zone codes without any explicit coordination.

3.3.2 Routing an Event to its Owner
The aim of hashing an event to a zone code is to store the

event at the node within the network node that owns that
zone. We call this node the owner of the event. Consider
an event E that has just been generated at a node A. After
encoding event E, node A compares code(E) with code(A).
If the two are identical, node A store event E locally; oth-
erwise, node A will attempt to route the event to its owner.
To do this, note that code(E) corresponds to some zone

Z′, which is A’s current guess for the zone at which event E
should be stored. A now invokes GPSR to send a message
to addr(Z′) (the centroid of Z′, Section 3.1). The message
contains the event E, code(E), and the target geographic
location for storing the event. In the message, A also marks
itself as the owner of event E. As we will see later, the
guessed zone Z′, the address addr(Z′), and the owner of
E, all of them contained in the message, will be refined by
intermediate forwarding nodes.
GPSR now delivers this message to the next hop towards

addr(Z′) from A. This next hop node (call it B) does not im-
mediately forward the message. Rather, it attempts to com-

2DIM does not assume that all nodes are homogeneous in
terms of the sensors they have. Thus, in an m dimensional
DIM, a node that does not possess all m sensors can use NULL
values for the corresponding readings. DIM treats NULL as
an extreme value for range comparisons. As an aside, a net-
work may have many DIM instances running concurrently.
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pute a new zone code for E to get a new code codenew(E).
B will update the code contained in the message (and also
the geographic destination of the message) if codenew(E) is
longer than the event code in the message. In this manner,
as the event wends its way to its owner, its zone code gets
refined. Now, B compares its own code code(B) against the
owner code owner(E) contained in the incoming message.
If code(B) has a longer match with code(E) than the cur-
rent owner owner(E), then B sets itself to be the current
owner of E, meaning that if nobody is eligible to store E,
then B will store the event (we shall see how this happens
next). If B’s zone code does not exactly match code(E), B
will invoke GPSR to deliver E to the next hop.

3.3.3 Resolving undecided zone boundaries during
insertion

Suppose that some node, say C, finds itself to be the des-
tination (or eventual owner) of an event E. It does so by
noticing that code code(C) equals code(E) after locally re-
computing a code for E. In that case, C stores E locally, but
only if all four of C’s zone boundaries are decided. When
this condition holds, C knows for sure that no other nodes
have overlapped zones with it. In this case, we call C an
internal node.
Recall, though, that because the zone discovery algorithm

Section 3.2 only uses information from immediate neighbors,
one or more of C’s boundaries may be undecided. If so, C
assumes that some other nodes have a zone that overlaps
with its own, and sets out to resolve this overlap. To do
this, C now sets itself to be the owner of E and continues
forwarding the message. Here we rely on GPSR’s perime-
ter mode routing to probe around the void that causes the
undecided boundary. Since the message starts from C and
is destined for a geographic location near C, GPSR guar-
antees that the message will be delivered back to C if no
other nodes will update the information in the message. If
the message comes back to C with itself to be the owner, C
infers that it must be the true owner of the zone and stores
E locally.
If this does not happen, there are two possibilities. The

first is that as the event traverses the perimeter, some in-
termediate node, say B whose zone overlaps with C’s marks
itself to be the owner of the event, but otherwise does not
change the event’s zone code. This node also recognizes that
its own zone overlaps with C’s and initiates a message ex-
change which causes each of them to appropriately shrink
their zone.
Figures 6 through 8 show an example of this data-driven

zone shrinking. Initially, both node A and node B have
claimed the same zone 0 because they are out of radio range
of each other. Suppose that A inserts an event E = 〈0.4, 0.8, 0.9〉.
A encodes E to 0 and claims itself to be the owner of E.
Since A is not an internal node, it sends out E, looking for
other owner candidates of E. Once E gets to node B, B will
see in the message’s owner field A’s code that is the same as
its own. B then shrinks its zone from 0 to 01 according to
A’s location which is also recorded in the message and send
a shrink request to A. Upon receiving this request, A also
shrinks its zone from 0 to 00.
A second possibility is if some intermediate node changes

the destination code of E to a more specific value (i.e.,
longer zone code). Let us label this node D. D now tries
to initiate delivery to the centroid of the new zone. This

A

B
0

0

110

100

1111

1110

101

Figure 6: Nodes A and B have claimed the same zone.
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Figure 7: An event/query message (filled arrows) trig-

gers zone shrinking (hollow arrows).
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Figure 8: The zone layout after shrinking. Now node

A and B have been mapped to different zones.

might result in a new perimeter walk that returns to D (if,
for example, D happens to be geographically closest to the
centroid of the zone). However, D would not be the owner
of the event, which would still be C. In routing to the cen-
troid of this zone, the message may traverse the perimeter
and return to D. Now D notices that C was the original
owner, so it encapsulates the event and directs it to C. In
case that there indeed is another node, say X, that owns
an overlapped zone with C, X will notice this fact by find-
ing in the message the same prefix of the code of one of
its zones, but with a different geographic location from its
own. X will shrink its zone to resolve the overlap. If X’s
zone is smaller than or equal to C’s zone, X will also send
a ”shrink” request to C. Once C receives a shrink request,
it will reduce its zone appropriately and fix its “undecided”
boundary. In this manner, the zone formation process is
resolved on demand in a data-driven way.
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There are several interesting effects with respect to perime-
ter walking that arise in our algorithm. The first is that
there are some cases where an event insertion might cause
the entire outer perimeter of the network to be traversed3.
Figure 6 also works as an example where the outer perime-
ter is traversed. Event E inserted by A will eventually be
stored in node B. Before node B stores event E, if B’s nom-
inal radio range does not intersect the network boundary, it
needs to send out E again as A did, because B in this case
is not an internal node. But if B’s nominal radio range in-
tersects the network boundary, it then has two choices. It
can assume that there will not be any nodes outside the
network boundary and so B is an internal node. This is an
aggressive approach. On the other hand, B can also make
a conservative decision assuming that there might be some
other nodes it have not heard of yet. B will then force the
message walking another perimeter before storing it.
In some situations, especially for large zones where the

node that owns a zone is far away from the centroid of the
owned zone, there might exist a small perimeter around the
destination that does not include the owner of the zone. The
event will end up being stored at a different node than the
real owner. In order to deal with this problem, we add an
extra operation in event forwarding, called efficient neighbor
discovery. Before invoking GPSR, a node needs to check if
there exists a neighbor who is eligible to be the real owner of
the event. To do this, a node C, say, needs to know the zone
codes of its neighboring nodes. We deploy GPSR’s beacon-
ing message to piggyback the zone codes for nodes. So by
simply comparing the event’s code and neighbor’s code, a
node can decide whether there exists a neighbor Y which
is more likely to be the owner of event E. C delivers E
to Y , which simply follows the decision making procedure
discussed above.

3.3.4 Summary and Pseudo-code
In summary, our event insertion procedure is designed to

nicely interact with the zone discovery mechanism, and the
event hashing mechanism. The latter two mechanisms are
kept simple, while the event insertion mechanism uses lazy
evaluation at each hop to refine the event’s zone code, and it
leverages GPSR’s perimeter walking mechanism to fix unde-
cided zone boundaries. In Section 3.5, we address robustness
of event insertion to packet loss or to node failures.
Figure 5 shows the pseudo-code for inserting and forward-

ing an event e. In this pseudo code, we have omitted a de-
scription of the zone shrinking procedure. In the pseudo
code, procedure is Internal() is used to determine if the
caller is an internal node and procedure is Owner() is used
to determine if the caller is more eligible to be the owner of
the event than is currently claimed owner as recorded in the
message. Procedure Send-Message is used to send either
an event message or a query message. If the message desti-
nation address has been changed, the packet source address
needs also to be changed in order to avoid being dropped by
GPSR, since GPSR does not allow a node to see the same
packet in greedy mode twice.

3This happens less frequently than for GHTs, where insert-
ing an event to a location outside the actual (but inside
the nominal) boundary of the network will always invoke an
external perimeter walk.

3.4 Resolving and Routing Queries
DIMs support both point queries4 and range queries. Rout-

ing a point query is identical to routing an event. Thus, the
rest of this section details how range queries are routed.
The key challenge in routing zone queries is brought out

by the following strawman design. If the entire network was
divided evenly into zones of depth k (for some pre-defined
constant k), then the querier (the node issuing the query)
could subdivide a given range query into the relevant sub-
zones and route individual requests to each of the zones.
This can be inefficient for large range queries and also hard
to implement in our design where zone sizes are not pre-
defined. Accordingly, we use a slightly different technique
where a range query is initially routed to a zone correspond-
ing to the entire range, and is then progressively split into
smaller subqueries. We describe this algorithm here.
The first step of the algorithm is to map a range query to

a zone code prefix. Conceptually, this is easy; in a zone tree
(Figure 3), there exists some node which contains the entire
range query in its sub-tree, and none of its children in the
tree do. The initial zone code we choose for the query is the
zone code corresponding to that tree node, and is a prefix of
the zone codes of all zones (note that these zones may not
be geographically contiguous) in the subtree. The querier
computes the zone code of Q, denoted by code(Q) and then
starts routing a query to addr(code(Q)).
Upon receiving a range query Q, a node A (where A is any

node on the query propagation path) divides it into multiple
smaller sized subqueries if there is an overlap between the
zone of A, zone(A) and the zone code associated with Q,
code(Q). Our approach to split a query Q into subqueries
is as follows. If the range of Q’s first attribute contains
the value 0.5, A divides Q into two sub-queries one of whose
first attribute ranges from 0 to 0.5, and the other from 0.5 to
1. Then A decides the half that overlaps with its own zone.
Let’s call it QA. If QA does not exist, then A stops splitting;
otherwise, it continues splitting (using the second attribute
range) and recomputing QA until QA is small enough so
that it completely falls into zone(A) and hence A can now
resolve it. For example, suppose that node A, whose code
is 0110, is to split a range query Q = 〈0.3 − 0.8, 0.6 − 0.9〉.
The splitting steps is shown in Figure 2. After splitting,
we obtain three smaller queries q0 = 〈0.3 − 0.5, 0.6 − 0.75〉,
q1 = 〈0.3− 0.5, 0.75− 0.9〉, and q2 = 〈0.5− 0.8, 0.6− 0.9〉.
This splitting procedure is illustrated in Figure 9 which

also shows the codes of each subquery after splitting.
A then replies to subquery q0 with data stored locally

and sends subqueries q1 and q2 using the procedure outlined
above. More generally, if node A finds itself to be inside
the zone subtree that maximally covers Q, it will send the
subqueries that resulted from the split. Otherwise, if there
is no overlap between A and Q, then A forwards Q as is (in
this case Q is either the original query, or a product of an
earlier split).
Figure 10 describes the pseudo-code for the zone splitting

algorithm. As shown in the above algorithm, once a sub-
query has been recognized as belonging to the caller’s zone,
procedure Resolve is invoked to resolve the subquery and
send a reply to the querier. Every query message contains

4By point queries, we mean the equality condition on all
indexed keys. DIM index attributes are not necessarily pri-
mary keys.
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the geographic location of its initiator, so the corresponding
reply message can be delivered directly back to the initia-
tor. Finally, in the process of query resolution, zones might
shrink similar to shrinkage during inserting. We omit this
in the pseudo code.

3.5 Robustness
Until now, we have not discussed the impact of node fail-

ures and packet losses, or node arrivals and departures on
our algorithms. Packet losses can affect query and event in-
sertion, and node failures can result in lost data, while node
arrivals and departures can impact the zone structure. We
now discuss how DIMs can be made robust to these kinds
of dynamics.

3.5.1 Maintaining Zones
In previous sections, we described how the zone discovery

algorithm could leave zone boundaries undecided. These un-
decided boundaries are resolved during insertion or query-
ing, using the zone shrinking procedure describe above.
When a new node joins the network, the zone discovery

mechanism (Section 3.2) will cause neighboring zones to ap-
propriately adjust their zone boundaries. At this time, those
zones can also transfer to the new node those events they
store but which should belong to the new node.
Before a node turns itself off (if this is indeed possible), it

knows that its backup node (Section 3.1) will take over its
zone, and will simply send all its events to its backup node.
Node deletion may also cause zone expansion. In order to
keep the mapping between the binary zone tree’s leaf nodes
and zones, we allow zone expansion to only occur among
sibling zones (Section 3.1). The rule is: if zone(A)’s sibling
zone becomes empty, then A can expand its own zone to
include its sibling zone.
Now, we turn our attention to node failures. Node failures

are just like node deletions except that a failed node does
not have a chance to move its events to another node. But
how does a node decide if its sibling has failed? If the sib-
ling is within radio range, the absence of GPSR beaconing
messages can detect this. Once it detects this, the node can
expand its zone. A different approach is needed for detect-
ing siblings who are not within radio range. These are the
cases where two nodes own their zones after exchanging a
shrink message; they do not periodically exchange messages
thereafter to maintain this zone relationship. In this case,
we detect the failure in a data-driven fashion, with obvious
efficiency benefits compared to periodic keepalives. Once a
node B has failed, an event or query message that previously
should have been owned by the failed node will now be de-
livered to the node A that owns the empty zone left by node
B. A can see this message because A stands right around
the empty area left by B and is guaranteed to be visited in a
GPSR perimeter traversal. A will set itself to be the owner
of the message, and any node which would have dropped this
message due to a perimeter loop will redirect the message to
A instead. If A’s zone happens to be the sibling of B’s zone,
A can safely expand its own zone and notify its expanded
zone to its neighbors via GPSR beaconing messages.

3.5.2 Preventing Data Loss from Node Failure
The algorithms described above are robust in terms of

zone formation, but node failure can erase data. To avoid
this, DIMs can employ two kinds of replication: local repli-

cation to be resilient to random node failures, and mirror
replication for resilience to concurrent failure of geographi-
cally contiguous nodes.
Mirror replication is conceptually easy. Suppose an event

E has a zone code code(E). Then, the node that inserts
E would store two copies of E; one at the zone denoted
by code(E), and the other at the zone corresponding to the
one’s complement of code(E). This technique essentially
creates a mirror DIM. A querier would need, in parallel, to
query both the original DIM and its mirror since there is no
way of knowing if a collection of nodes has failed. Clearly,
the trade-off here is an approximate doubling of both inser-
tion and query costs.
There exists a far cheaper technique to ensure resilience

to random node failures. Our local replication technique
rests on the observation that, for each node A, there exists
a unique node which will take over its zone when A fails.
This node is defined as the node responsible for A’s zone’s
backup zone (see Section 3.1). The basic idea is that A
replicates each data item it has in this node. We call this
node A’s local replica. Let A’s local replica be B. Often
B will be a radio neighbor of A and can be detected from
GPSR beacons. Sometimes, however, this is not the case,
and B will have to be explicitly discovered.
We use an explicit message for discovering the local replica.

Discovering the local replica is data-driven, and uses a mech-
anism similar to that of event insertion. Node A sends a
message whose geographic destination is a random nearby
location chosen by A. The location is close enough to A such
that GPSR will guarantee that the message will delivered
back to A. In addition, the message has three fields, one for
the zone code of A, code(A), one for the owner owner(A) of
zone(A) which is set to be empty, and one for the geographic
location of owner(A). Then the packet will be delivered in
GPSR perimeter mode. Each node that receives this mes-
sage will compare its zone code and code(A) in the message,
and if it is more eligible to be the owner of zone(A) than
the current owner(A) recorded in the message, it will up-
date the field owner(A) and the corresponding geographic
location. Once the packet comes back to A, it will know the
location of its local replica and can start to send replicas.
In a dense sensor network, the local replica of a node

is usually very near to the node, either its direct neighbor
or 1–2 hops away, so the cost of sending replicas to local
replication will not dominate the network traffic. However,
a node’s local replica itself may fail. There are two ways to
deal with this situation; periodic refreshes, or repeated data-
driven discovery of local replicas. The former has higher
overhead, but more quickly discovers failed replicas.

3.5.3 Robustness to Packet Loss
Finally, the mechanisms for querying and event insertion

can be easily made resilient to packet loss. For event inser-
tion, a simple ACK scheme suffices.
Of course, queries and responses can be lost as well. In

this case, there exists an efficient approach for error recov-
ery. This rests on the observation that the querier knows
which zones fall within its query and should have responded
(we assume that a node that has no data matching a query,
but whose zone falls within the query, responds with a neg-
ative acknowledgment). After a conservative timeout, the
querier can re-issue the queries selectively to these zones.
If DIM cannot get any answers (positive or negative) from

70



<0.3-0.8, 0.6-0.9>

<0.5-0.8, 0.6-0.9><0.3-0.5, 0.6-0.9>

<0.3-0.5, 0.6-0.9>

<0.3-0.5, 0.6-0.9>

<0.3-0.5, 0.6-0.75> <0.3-0.5, 0.75-0.9>

0

0

1

1

1

1

Figure 9: An example of range query splitting

Resolve-Range-Query(Q)
1 Qsub ← nil
2 q0, Qsub ← Split-Query(Q)
3 if q0 = nil
4 then c← Encode(Q)
5 if Contain(c, code(A)) = true
6 then go to step 12
7 else Send-Message(c, q0)
8 else Resolve(q0)
9 if is Internal() = true

10 then Absorb (q0)
11 else Append q0 to Qsub

12 if Qsub �= nil
13 then for each subquery q ∈ Qsub

14 do c← Encode(q)
15 Send-Message(c, q)

Figure 10: Query resolving algorithm

certain zones after repeated timeouts, it can at least return
the partial query results to the application together with the
information about the zones from which data is missing.

4. DIMS: AN ANALYSIS
In this section, we present a simple analytic performance

evaluation of DIMs, and compare their performance against
other possible approaches for implementing multi-dimensional
range queries in sensor networks. In the next section, we val-
idate these analyses using detailed packet-level simulations.
Our primary metrics for the performance of a DIM are:

Average Insertion Cost measures the average number of
messages required to insert an event into the network.

Average Query Delivery Cost measures the average num-
ber of messages required to route a query message to
all the relevant nodes in the network.

It does not measure the number of messages required to
transmit responses to the querier; this latter number de-
pends upon the precise data distribution and is the same
for many of the schemes we compare DIMs against.
In DIMs, event insertion essentially uses geographic rout-

ing. In a dense N-node network where the likelihood of
traversing perimeters is small, the average event insertion
cost proportional to

√
N [23].

On the other hand, the query delivery cost depends upon
the size of ranges specified in the query. Recall that our
query delivery mechanism is careful about splitting a query
into sub-queries, doing so only when the query nears the
zone that covers the query range. Thus, when the querier is

far from the queried zone, there are two components to the
query delivery cost. The first, which is proportional to

√
N ,

is the cost to deliver the query near the covering zone. If
within this covering zone, there are M nodes, the message
delivery cost of splitting the query is proportional to M .
The average cost of query delivery depends upon the dis-

tribution of query range sizes. Now, suppose that query sizes
follow some density function f(x), then the average cost of

resolve a query can be approximated by
R N

1
xf(x)dx. To

give some intuition for the performance of DIMs, we con-
sider four different forms for f(x): the uniform distribution
where a query range encompassing the entire network is as
likely as a point query; a bounded uniform distribution where
all sizes up to a bound B are equally likely; an algebraic dis-
tribution in which most queries are small, but large queries
are somewhat likely; and an exponential distribution where
most queries are small and large queries are unlikely. In all
our analyses, we make the simplifying assumption that the
size of a query is proportional to the number of nodes that
can answer that query.
For the uniform distribution P (x) ∝ c for some constant c.

If each query size from 1 . . . N is equally likely, the average
query delivery cost of uniformly distributed queries is O(N).
Thus, for uniformly distributed queries, the performance of
DIMs is comparable to that of flooding. However, for the
applications we envision, where nodes within the network
are trying to correlate events, the uniform distribution is
highly unrealistic.
Somewhat more realistic is a situation where all query

sizes are bounded by a constant B. In this case, the average

cost for resolving such a query is approximately
R B

1
xf(x)dx =

O(B). Recall now that all queries have to pay an approxi-

mate cost of O(
√

N) to deliver the query near the covering
zone. Thus, if DIM limited queries to a size proportional to√

N , the average query cost would be O(
√

N).
The algebraic distribution, where f(x) ∝ x−k, for some

constant k between 1 and 2, has an average query resolution

cost given by
R N

1
xf(x)dx = O(N2−k). In this case, if k >

1.5, the average cost of query delivery is dominated by the
cost to deliver the query to near the covering zone, given by
O(

√
N).

Finally, for the exponential distribution, f(x) = ce−cx for
some constant c, and the average cost is just the mean of the
corresponding distribution, i.e., O(1) for large N . Asymp-
totically, then, the cost of the query for the exponential
distribution is dominated by the cost to deliver the query
near the covering zone (O(

√
N)).

Thus, we see that if queries follow either the bounded
uniform distribution, the algebraic distribution, or the ex-
ponential distribution, the query cost scales as the insertion
cost (for appropriate choice of constants for the bounded
uniform and the algebraic distributions).
How well does the performance of DIMs compare against

alternative choices for implementing multi-dimensional queries?
A simple alternative is called external storage [23], where all
events are stored centrally in a node outside the sensor net-
work. This scheme incurs an insertion cost of O(

√
N), and

a zero query cost. However, as [23] points out, such systems
may be impractical in sensor networks since the access link
to the external node becomes a hotspot.
A second alternative implementation would store events

at the node where they are generated. Queries are flooded
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throughout the network, and nodes that have matching data
respond. Examples of systems that can be used for this (al-
though, to our knowledge, these systems do not implement
multi-dimensional range queries) are Directed Diffusion [15]
and TinyDB [17]. The flooding scheme incurs a zero inser-
tion cost, but an O(N) query cost. It is easy to show that
DIMs outperform flooding as long as the ratio of the number
of insertions to the number of queries is less than

√
N .

A final alternative would be to use a geographic hash table
(GHT [20]). In this approach, attribute values are assumed
to be integers (this is actually quite a reasonable assump-
tion since attribute values are often quantized), and events
are hashed on some (say, the first) attribute. A range query
is sub-divided into several sub-queries, one for each integer
in the range of the first attribute. Each sub-query is then
hashed to the appropriate location. The nodes that receive a
sub-query only return events that match all other attribute
ranges. In this approach, which we call GHT-R (GHT’s for

range queries) the insertion cost is O(
√

N). Suppose that
the range of the first attribute contains r discrete values.
Then the cost to deliver queries is O(r

√
N). Thus, asymp-

totically, GHT-R’s perform similarly to DIMs. In practice,
however, the proportionality constants are significantly dif-
ferent, and DIMs outperform GHT-Rs, as we shall show
using detailed simulations.

5. DIMS: SIMULATION RESULTS
Our analysis gives us some insight into the asymptotic

behavior of various approaches for multi-dimensional range
queries. In this section, we use simulation to compare DIMs
against flooding and GHT-R; this comparison gives us a
more detailed understanding of these approaches for moder-
ate size networks, and gives us a nuanced view of the mech-
anistic differences between some of these approaches.

5.1 Simulation Methodology
We use ns-2 for our simulations. Since DIMs are imple-

mented on top of GPSR, we first ported an earlier GPSR
implementation to the latest version of ns-2. We modified
the GPSR module to call our DIM implementation when
it receives any data message in transit or when it is about
to drop a message because that message traversed the entire
perimeter. This allows a DIM to modify message zone codes
in flight (Section 3), and determine the actual owner of an
event or query.
In addition, to this, we implemented in ns-2 most of the

DIM mechanisms described in Section 3. Of those mecha-
nisms, the only one we did not implement is mirror replica-
tion. We have implemented selective query retransmission
for resiliency to packet loss, but have left the evaluation of
this mechanism to future work. Our DIM implementation
in ns-2 is 2800 lines of code.
Finally, we implemented GHT-R, our GHT-based multi-

dimensional range query mechanism in ns-2. This imple-
mentation was relatively straightforward, given that we had
ported GPSR, and modified GPSR to detect the completion
of perimeter mode traversals.
Using this implementation, we conducted a fairly exten-

sive evaluation of DIM and two alternatives (flooding, and
our GHT-R). For all our experiments, we use uniformly
placed sensor nodes with network sizes ranging from 50
nodes to 300 nodes. Each node has a radio range of 40m.
For the results presented here, each node has on average 20

nodes within its nominal radio range. We have conducted
experiments at other node densities; they are in agreement
with the results presented here.
In all our experiments, each node first generates 3 events5

on average (more precisely, for a topology of size N , we have
3N events, and each node is equally likely to generate an
event). We have conducted experiments for three different
event value distributions. Our uniform event distribution
generates 2-dimensional events and, for each dimension, ev-
ery attribute value is equally likely. Our normal event dis-
tribution generates 2-dimensional events and, for each di-
mension, the attribute value is normally distributed with a
mean corresponding to the mid-point of the attribute value
range. The normal event distribution represents a skewed
data set. Finally, our trace event distribution is a collection
of 4-dimensional events obtained from a habitat monitoring
network. As we shall see, this represents a fairly skewed
data set.
Having generated events, for each simulation we gener-

ate queries such that, on average, each node generates 2
queries. The query sizes are determined using the four size
distributions we discussed in Section 4: uniform, bounded-
uniform, algebraic and exponential. Once a query size has
been determined, the location of the query (i.e., the actual
boundaries of the zone) are uniformly distributed. For our
GHT-R experiments, the dynamic range of the attributes
had 100 discrete values, but we restricted the query range
for any one attribute to 50 discrete values to allow those
simulations to complete in reasonable time.
Finally, using one set of simulations we evaluate the effi-

cacy of local replication by turning off random fractions of
nodes and measuring the fidelity of the returned results.
The primary metrics for our simulations are the average

query and insertion costs, as defined in Section 4.

5.2 Results
Although we have examined almost all the combinations

of factors described above, we discuss only the most salient
ones here, for lack of space.
Figure 11 plots the average insertion costs for DIM and

GHT-R (for flooding, of course, the insertion costs are zero).
DIM incurs less per event overhead in inserting events (re-
gardless of the actual event distribution; Figure 11 shows the
cost for uniformly distributed events). The reason for this is
interesting. In GHT-R, storing almost every event incurs a
perimeter traversal, and storing some events require travers-
ing the outer perimeter of the network [20]. By contrast, in
DIM, storing an event incurs a perimeter traversal only when
a node’s boundaries are undecided. Furthermore, an inser-
tion or a query in a DIM can traverse the outer perimeter
(Section 3.3), but less frequently than in GHTs.
Figure 13 plots the average query cost for a bounded uni-

form query size distribution. For this graph (and the next)
we use a uniform event distribution, since the event distri-
bution does not affect the query delivery cost. For this sim-
ulation, our bound was 1

4
th the size of the largest possible

5Our metrics are chosen so that the exact number of events
and queries is unimportant for our discussion. Of course,
the overall performance of the system will depend on the
relative frequency of events and queries, as we discuss in
Section 4. Since we don’t have realistic ratios for these, we
focus on the microscopic costs, rather than on the overall
system costs.
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Figure 11: Average insertion cost for DIM and
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Figure 12: Local replication performance.

query (e.g., a query of the form 〈0− 0.5, 0− 0.5〉. Even for
this generous query size, DIMs perform quite well (almost
a third the cost of flooding). Notice, however, that GHT-
Rs incur high query cost since almost any query requires as
many subqueries as the width of the first attribute’s range.
Figure 14 plots the average query cost for the exponential

distribution (the average query size for this distribution was
set to be 1

16
th the largest possible query). The superior

scaling of DIMs is evident in these graphs. Clearly, this is
the regime in which one might expect DIMs to perform best,
when most of the queries are small and large queries are
relatively rare. This is also the regime in which one would
expect to use multi-dimensional range queries: to perform
relatively tight correlations. As with the bounded uniform
distribution, GHT query cost is dominated by the cost of
sending sub-queries; for DIMs, the query splitting strategy
works quite well in keep overall query delivery costs low.
Figure 12 describes the efficacy of local replication. To

obtain this figure, we conducted the following experiment.
On a 100-node network, we inserted a number of events
uniformly distributed throughout the network, then issued
a query covering the entire network and recorded the an-
swers. Knowing the expected answers for this query, we
then successively removed a fraction f of nodes randomly,
and re-issued the same query. The figure plots the fraction
of expected responses actually received, with and without
replication. As the graph shows, local replication performs
well for random failures, returning almost 90% of the re-
sponses when up to 30% of the nodes have failed simultane-
ously 6.In the absence of local replication, of course, when

6In practice, the performance of local replication is likely to
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Figure 13: Average query cost with a bounded

uniform query distribution
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Figure 14: Average query cost with an exponential
query distribution

30% of the nodes fail, the response rate is only 70% as one
would expect.
We note that DIMs (as currently designed) are not per-

fect. When the data is highly skewed—as it was for our trace
data set from the habitat monitoring application where most
of the event values fell into within 10% of the attribute’s
range—a few DIM nodes will clearly become the bottleneck.
This is depicted in Figure 15, which shows that for DIMs,
and GHT-Rs, the maximum number of transmissions at any
network node (the hotspots) is rather high. (For less skewed
data distributions, and reasonable query size distributions,
the hotspot curves for all three schemes are comparable.)
This is a standard problem that the database indices have
dealt with by tree re-balancing. In our case, simpler solu-
tions might be possible (and we discuss this in Section 7).
However, our use of the trace data demonstrates that

DIMs work for events which have more than two dimensions.
Increasing the number of dimensions does not noticeably de-
grade DIMs query cost (omitted for lack of space).
Also omitted are experiments examining the impact of

several other factors, as they do not affect our conclusions
in any way. As we expected, DIMs are comparable in per-
formance to flooding when all sizes of queries are equally
likely. For an algebraic distribution of query sizes, the rela-
tive performance is close to that for the exponential distri-
bution. For normally distributed events, the insertion costs

be much better than this. Assuming a node and its replica
don’t simultaneously fail often, a node will almost always
detect a replica failure and re-replicate, leading to near 100%
response rates.
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Figure 16: Software architecture of DIM over GPSR

are comparable to that for the uniform distribution.
Finally, we note that in all our evaluations we have only

used list queries (those that request all events matching the
specified range). We expect that for summary queries (those
that expect an aggregate over matching events), the overall
cost of DIMs could be lower because the matching data are
likely to be found in one or a small number of zones. We
leave an understanding of this to future work. Also left to
future work is a detailed understanding of the impact of
location error on DIM’s mechanisms. Recent work [22] has
examined the impact of imprecise location information on
other data-centric storage mechanisms such as GHTs, and
found that there exist relatively simple fixes to GPSR that
ameliorate the effects of location error.

6. IMPLEMENTATION
We have implemented DIMs on a Linux platform suitable

for experimentation on PDAs and PC-104 class machines.
To implement DIMs, we had to develop and test an indepen-
dent implementation of GPSR. Our GPSR implementation
is full-featured, while our DIM implementation has most of
the algorithms discussed in Section 3; some of the robustness
extensions have only simpler variants implemented.
The software architecture of DIM/GPSR system is shown

in Figure 16. The entire system (about 5000 lines of code)
is event-driven and multi-threaded. The DIM subsystem
consists of six logical components: zone management, event
maintenance, event routing, query routing, query process-
ing, and GPSR interactions. The GPSR system is imple-
mented as user-level daemon process. Applications are exe-
cuted as clients. For the DIM subsystem, the GPSR module
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Figure 18: Query distribution cost

provides several extensions: it exports information about
neighbors, and provides callbacks during packet forwarding
and perimeter-mode termination.
We tested our implementation on a testbed consisting of 8

PC-104 class machines. Each of these boxes runs Linux and
uses a Mica mote (attached through a serial cable) for com-
munication. These boxes are laid out in an office building
with a total spatial separation of over a hundred feet. We
manually measured the locations of these nodes relative to
some coordinate system and configured the nodes with their
location. The network topology is approximately a chain.
On this testbed, we inserted queries and events from a sin-

gle designated node. Our events have two attributes which
span all combinations of the four values [0, 0.25, 0.75, 1] (six-
teen events in all). Our queries span four sizes, returning 1,
4, 9 and 16 events respectively.
Figure 17 plots the number of events received for different

sized queries. It might appear that we received fewer events
than expected, but this graph doesn’t count the events that
were already stored at the querier. With that adjustment,
the number of responses matches our expectation. Finally,
Figure 18 shows the total number of messages required for
different query sizes on our testbed.
While these experiments do not reveal as much about the

performance range of DIMs as our simulations do, they nev-
ertheless serve as proof-of-concept for DIMs. Our next step
in the implementation is to port DIMs to the Mica motes,
and integrate them into the TinyDB [17] sensor database
engine on motes.
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7. CONCLUSIONS
In this paper, we have discussed the design and evaluation

of a distributed data structure called DIM for efficiently re-
solving multi-dimensional range queries in sensor networks.
Our design of DIMs relies upon a novel locality-preserving
hash inspired by early work in database indexing, and is
built upon GPSR. We have a working prototype, both of
GPSR and DIM, and plan to conduct larger scale experi-
ments in the future.
There are several interesting future directions that we

intend to pursue. One is adaptation to skewed data dis-
tributions, since these can cause storage and transmission
hotspots. Unlike traditional database indices that re-balance
trees upon data insertion, in sensor networks it might be
feasible to re-structure the zones on a much larger timescale
after obtaining a rough global estimate of the data distri-
bution. Another direction is support for node heterogeneity
in the zone construction process; nodes with larger storage
space assert larger-sized zones for themselves. A third is sup-
port for efficient resolution of existential queries—whether
there exists an event matching a multi-dimensional range.
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