Panoramas

Kari Pulli
Research Fellow
Nokia Research Center Palo Alto
Are you getting the whole picture?

Compact Camera FOV = 50 x 35°
Are you getting the whole picture?

Compact Camera FOV = 50 x 35°
Human FOV = 200 x 135°
Are you getting the whole picture?

Compact Camera FOV = 50 x 35°
Human FOV = 200 x 135°
Panoramic Mosaic = 360 x 180°
Panorama

A wide-angle representation of the scene

Panorama of *Along the River During Qingming Festival*, 18th century remake of a 12th century original by Chinese artist Zhang Zeduan.
Panorama: Cinema for the early 19th century

Burford’s Panorama, Leicester Square, London, 1801

Painting by Robert Mitchell
Creating panoramas with wide-angle optics

http://www.0-360.com

AF DX Fisheye-NIKKOR 10.5mm f/2.8G ED
Rotation cameras

Idea
- rotate camera or lens so that a vertical slit is exposed

Swing lens
- rotate the lens and a vertical slit (or the sensor)
- typically can get 110-140 degree panoramas
- Widelux, Seitz, ...

Full rotation
- whole camera rotates
- can get 360 degree panoramas
- Panoscan, Roundshot, ...
Swing-lens panoramic images

San Francisco in ruins, 1906

101 Ranch, Oklahoma, circa 1920
Flatback panoramic camera

Lee Frost, Val D’Orcia, Tuscany, Italy
Disposable panoramic camera
wide-angle lens, limited vertical FOV
Stitching images together to make a mosaic
Stitching images together to make a mosaic

Given a set of images that should stitch together
 • by rotating the camera around its center of perspective

Step 1: Find corresponding features in a pair of image
Step 2: Compute transformation from 2nd to 1st image
Step 3: Warp 2nd image so it overlays 1st image
Step 4: Blend images where they overlap one another
repeat for 3rd image and mosaic of first two, etc.
Aligning images: Translation?

Translations are not enough to align the images.
A pencil of rays contains all views

Can generate any synthetic camera view as long as it has \textit{the same center of projection}!

\ldots and scene geometry does not matter \ldots
Reprojecting an image onto a different picture plane

the sidewalk art of Julian Beever

the view on any picture plane can be projected onto any other plane in 3D without changing its appearance as seen from the center of projection
The mosaic has a natural interpretation in 3D

- the images are reprojected onto a common plane
- the mosaic is formed on this plane
- mosaic is a *synthetic wide-angle camera*
Which transform to use?

Translation
2 unknowns

Affine
6 unknowns

Perspective
8 unknowns
Homography

Projective mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren’t
- but must preserve straight lines
called Homography

\[
\begin{bmatrix}
wx' \\
wiy' \\
w
\end{bmatrix} =
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

To apply a homography H

- Compute $p' = Hp$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates $[x',y']$ (divide by w)
Homography from mapping quads

Figure 2.8: Quadrilateral to quadrilateral mapping as a composition of simpler mappings.

Fundamentals of Texture Mapping and Image Warping
Homography from \(n \) point correspondences

Multiply out
\[
\begin{align*}
wx' &= h_{11} x + h_{12} y + h_{13} \\
wy' &= h_{21} x + h_{22} y + h_{23} \\
w &= h_{31} x + h_{32} y + h_{33}
\end{align*}
\]

Get rid of \(w \)
\[
\begin{align*}
(h_{31} x + h_{32} y + h_{33})x' - (h_{11} x + h_{12} y + h_{13}) &= 0 \\
(h_{31} x + h_{32} y + h_{33})y' - (h_{21} x + h_{22} y + h_{23}) &= 0
\end{align*}
\]

Create a new system \(Ah = 0 \)
\[
\begin{align*}
\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} &= \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \\
p' &= H p
\end{align*}
\]

Solve with singular value decomposition of \(A = USV^T \)
\[
\begin{align*}
\text{solution is in the nullspace of } A \\
\text{the last column of } V (= \text{last row of } V^T)
\end{align*}
\]
from numpy import *

create original points
X = ones([3,4])
X[:2,:] = random.rand(2,4)
x,y = X[0],X[1]

create projective matrix
H = random.rand(3,3)

create the target points
Y = dot(H,X)

homogeneous division
YY = (Y / Y[2])[:2,:]
u,v = YY[0],YY[1]

A = zeros([8,9])
for i in range(4):
 A[2*i] = [-x[i], -y[i], -1, 0, 0, 0, x[i] * u[i], y[i] * u[i], u[i]]
 A[2*i+1] = [0, 0, 0, -x[i], -y[i], -1, x[i] * v[i], y[i] * v[i], v[i]]

[u,s,vt] = linalg.svd(A)

reorder the last row of vt to 3x3 matrix
HH = vt[-1,:].reshape([3,3])

test that the matrices are the same (within a multiplicative factor)
print H - HH * (H[2,2] / HH[2,2])
Summary of perspective stitching

• Pick one image, typically the central view (red outline)
• Warp the others to its plane
• Blend
Example

common picture plane of mosaic image

perspective reprojection
Using 4 shots instead of 3
Back to 3 shots

surface of cylinder
cylindrical reprojection
Back to 3 shots

surface of cylinder

cylindrical reprojection
Back to 3 shots

perspective reprojection
Cylindrical panoramas

What if you want a 360° panorama?

Project each image onto a cylinder
A cylindrical image is a rectangular array
Cylindrical panoramas

What if you want a 360° panorama?

Project each image onto a cylinder
A cylindrical image is a rectangular array
To view without distortion
 • reproject a portion of the cylinder onto a picture plane representing the display screen
Imagine photographing the inside of a cylinder that is wallpapered with this panorama

- if your FOV is narrow, your photo won’t be too distorted
Demo

http://graphics.stanford.edu/courses/cs178/applets/projection.html
Changing camera center

Does it still work?

PP1

PP2

synthetic PP
Where to rotate? Nodal point?

http://www.reallyrightstuff.com/pano/index.html
Rotate around the center of lens perspective

Many instructions say rotate around the nodal point
 • wrong!
 http://toothwalker.org/optics/misconceptions.html#m6

Correct: the entrance pupil
 • the optical image of the physical aperture stop as 'seen' through the front of the lens system
 • due to the magnifying effect of the front lens, the entrance pupil's location is nearer than that of the physical aperture

The front and rear nodal points have the property that a ray aimed at one of them will be refracted by the lens such that it appears to have come from the other, and with the same angle with respect to the optical axis.
Test for parallax

Figure 3. Configuration to reveal the presence or absence of parallax. The subject is first placed at the left side of the frame, and subsequently at the right side after rotation of the camera about a vertical axis with the help of a panoramic tripod head.

Figure 2. Diagram of a 135/2.8 lens with rotation axes through the front nodal point N and entrance pupil E.

http://toothwalker.org/optics/cop.html#stitching
Wrong center of rotation -> parallax

Figure 4. Rotation about an axis through the entrance pupil.

Figure 5. Rotation about an axis through the front nodal point.
Cylindrical projection

- Map 3D point \((X,Y,Z)\) onto cylinder
 \[
 (\tilde{x}, \tilde{y}, \tilde{z}) = \frac{1}{\sqrt{X^2 + Z^2}}(X, Y, Z)
 \]

- Convert to cylindrical coordinates
 \[
 (\sin \theta, h, \cos \theta) = (\tilde{x}, \tilde{y}, \tilde{z})
 \]

- Convert to cylindrical image coordinates
 \[
 (\tilde{x}, \tilde{y}) = (f\theta, fh) + (\tilde{x}_c, \tilde{y}_c)
 \]
Cylindrical projection
Inverse cylindrical projection

\[\theta = \frac{(x_{cyl} - x_c)}{f} \]
\[h = \frac{(y_{cyl} - y_c)}{f} \]
\[\tilde{x} = \sin \theta \]
\[\tilde{y} = h \]
\[\tilde{z} = \cos \theta \]
Focal length

Image 384x300 f = 180 (pixels) f = 280 f = 380
Focal length is (highly!) camera dependant

- Can get a rough estimate by measuring FOV:

- Can use the EXIF data tag
 - might not give the right thing
- Can use several images together
 - find f that makes them match
- Etc.
Assembling the panorama

Stitch pairs together, blend, then crop
Problem: Drift

Vertical Error accumulation
- small (vertical) errors accumulate over time
- apply correction so that sum = 0 (for 360° pan.)

Horizontal Error accumulation
- can reuse first/last image to find the right panorama radius
Spherical projection

- Map 3D point \((X,Y,Z)\) onto sphere
 \[
 (\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)
 \]
- Convert to spherical coordinates
 \[
 (\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi) = (\hat{x}, \hat{y}, \hat{z})
 \]
- Convert to spherical image coordinates
 \[
 (\tilde{x}, \tilde{y}) = (f \theta, f \phi) + (\tilde{x}_c, \tilde{y}_c)
 \]
Spherical Projection
Inverse Spherical projection

\[\theta = \left(\frac{x_{sph} - x_c}{f} \right) \]
\[\varphi = \left(\frac{y_{sph} - y_c}{f} \right) \]
\[\hat{x} = \sin \theta \cos \varphi \]
\[\hat{y} = \sin \varphi \]
\[\hat{z} = \cos \theta \cos \varphi \]
Full-view Panorama
Building a Panorama
We need to match (align) images
Detect feature points in both images
Find corresponding pairs
Use these pairs to align images
Matching with Features

Problem 1:
- Detect the *same* point *independently* in both images

no chance to match!

We need a repeatable detector
Matching with Features

Problem 2:
- For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor
Harris Corners: The Basic Idea

We should easily recognize the point by looking through a small window. Shifting a window in any direction should give a large change in intensity.
Harris Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Harris Detector: Mathematics

Window-averaged change of intensity for the shift \([u,v]\):

\[
E(u, v) = \sum_{x, y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2
\]

Window function \(w(x,y) =\) 1 in window, 0 outside or Gaussian

1 in window, 0 outside

Gaussian
Harris Detector: Mathematics

Expanding $E(u,v)$ in a 2nd order Taylor series expansion, we have, for small shifts $[u,v]$, a bilinear approximation:

\[
E(u, v) \equiv \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}
\]

where M is a 2×2 matrix computed from image derivatives:

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]
Eigenvalues λ_1, λ_2 of M at different locations

λ_1 and λ_2 are large
Eigenvalues λ_1, λ_2 of M at different locations

large λ_1, small λ_2
Eigenvalues λ_1, λ_2 of M at different locations

g small λ_1, small λ_2
Harris Detector: Mathematics

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are small; E is almost constant in all directions
- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions
- λ_1 and λ_2 are large, $\lambda_1 >> \lambda_2$; "Corner"
- λ_1 and λ_2 are large, $\lambda_2 >> \lambda_1$; "Edge"
- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; "Edge"
- λ_1 and λ_2 are large, $\lambda_1 >> \lambda_2$; "Corner"
Measure of corner response:

\[R = \det M - k (\text{trace } M)^2 \]

\[\det M = \lambda_1 \lambda_2 \]
\[\text{trace } M = \lambda_1 + \lambda_2 \]

\(k \) – empirical constant, \(k = 0.04-0.06 \)
Harris Detector: Mathematics

- R depends only on eigenvalues of M
- R is large for a *corner*
- R is negative with large magnitude for an *edge*
- $|R|$ is small for a *flat* region
Harris Detector: Workflow
Harris Detector: Workflow

Compute corner response R
Harris Detector: Workflow

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
Harris Detector: Summary

Average intensity change in direction \([u,v]\) can be expressed as a bilinear form:

\[
E(u,v) \equiv [u,v] M \begin{bmatrix} u \\ v \end{bmatrix}
\]

Describe a point in terms of eigenvalues of \(M\):

measure of corner response

\[
R = \lambda_1 \lambda_2 - k (\lambda_1 + \lambda_2)^2
\]

A good (corner) point should have a *large intensity change in all directions*, i.e., \(R\) should be large positive
Harris Detector: Invariant to rotation

Corner response \(R \) is invariant to image rotation
Harris Detector: ~Invariant to intensity change

Partial invariance

✅ Only derivatives are used

\Rightarrow

invariance to intensity shift $I \rightarrow I + b$

✅ Intensity scale: $I \rightarrow a I$

R

threshold

x (image coordinate)

R

x (image coordinate)
Harris Detector: *Not* invariant to image scale!

All points will be classified as *edges*

Corner!
Point Descriptors

We know how to detect points
Next question:

How to match them?

Point descriptor should be:

1. Invariant
2. Distinctive
Descriptor overview:

- Determine **scale** (by maximizing DoG in scale and in space), **local orientation** as the dominant gradient direction. Use this scale and orientation to make all further computations invariant to scale and rotation.

SIFT – Scale Invariant Feature Transform

Descriptor overview:

- Determine **scale** (by maximizing DoG in scale and in space), **local orientation** as the dominant gradient direction. Use this scale and orientation to make all further computations invariant to scale and rotation.
- Compute **gradient orientation histograms** of several small windows (128 values for each point).
- Normalize the descriptor to make it invariant to intensity change.

Figure 12: The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown on the right. A parallelogram is drawn around each recognized object showing the boundaries of the original training image under the affine transformation solved for during recognition. Smaller squares indicate the keypoints that were used for recognition.
Registration in practice: tracking
Viewfinder alignment for tracking

Andrew Adams, Natasha Gelfand, Kari Pulli
Viewfinder Alignment
Eurographics 2008
http://graphics.stanford.edu/papers/viewfinderalignment/
Project gradients along columns and rows
... diagonal gradients along diagonals ...
... and find corners
Overlap and match the gradient projections and determine translation
Apply the best translation to corners
Match corners, refine translation & rotation
System Overview

Camera Module

Video Frames

Real-Time Tracking

High Resolution Images

Current location

Panorama expansion

time

NOKIA
System Overview

Camera Module

Video Frames

Real-Time Tracking

High Resolution Images

Image Warping

Image Registration
Image registration

Requirements

• Robust to illumination changes
• Robust to object motion in the scene
• Low computational complexity

Registration example (including large illumination changes)
Hybrid multi-resolution approach

Initial guess

I.B. Image Based
F.B. Feature Based

Registration parameters

Progression of multi-resolution registration

Actual size

Applied to hi-res
Feature-based registration

Previous estimate

Feature Detection (Harris corners) → Feature Matching (spherical coordinates) → RANSAC

Convert to spherical coordinates

Apply the previous registration estimate

Update search range

Validity check

New estimate

Convert from spherical coordinates

Best block cross-correlation match

Update search range

invalid

valid
System overview

Camera Module

Video Frames

Real-Time Tracking

High Resolution Images

Image Warping

Image Registration

NOKIA
System overview

Camera Module

Video Frames

Real-Time Tracking

High Resolution Images

Image Warping

Image Registration

Image Blending

Final Panorama

Photo by Marius Tico
Image blending

Directly averaging the overlapped pixels results in ghosting artifacts

- Moving objects, errors in registration, parallax, etc.

Photo by Chia-Kai Liang
Solution: Image labeling

Assign one input image each output pixel
- Optimal assignment can be found by graph cut [Agarwala et al. 2004]
New artifacts

Inconsistency between pixels from different input images
- Different exposure/white balance settings
- Photometric distortions (e.g., vignetting)
Solution: Poisson blending

Copy the gradient field from the input image
Reconstruct the final image by solving a Poisson equation

Combined gradient field
Seam finding gets difficult when colors differ

No color correction

With color correction

Color correction in linearized RGB

\[S_{i-1} \quad S^o_{i-1} \quad S^o \quad S_i \]

\[\alpha_{c,i} = \frac{\sum_p (C_{c,i-1}(p))^y}{\sum_p (C_{c,i}(p))^y} \quad c \in \{R, G, B\}; (i = 1, 2, \ldots, n) \]

\[\min_{g_c} \sum_{i=1}^n (g_c \alpha_{c,i} - 1)^2 \quad c \in \{R, G, B\} \]

\[C_c(p) \leftarrow (g_c \alpha_{c,i})^{\frac{1}{y}} C_c(p) \]

\[(i = 0, 1, \ldots, n) \]
Dynamic programming finds good cuts fast

- Error surface
 \[e = (I_c^o - S_c^o)^2 \]

- Cumulative minimum error surface
 \[E(w, h) = e(w, h) + \min(E(w-1, h-1), E(w, h-1), E(w+1, h-1)) \]
Fast “Poisson” blending

Coordinates for Instant Image Cloning

Zeev Farbman
Hebrew University

Gil Hoffer
Tel Aviv University

Yaron Lipman
Princeton University

Daniel Cohen-Or
Tel Aviv University

Dani Lischinski
Hebrew University

(a) Source patch
(b) Laplace membrane
(c) Mean-value membrane

(d) Target image
(e) Poisson cloning
(f) Mean-value cloning

SIGGRAPH 2009
Alpha blending

After labeling

Poisson blending
System Overview

Camera Module

Real-Time Tracking

Video Frames

High Resolution Images

Image Warping

Image Registration

Image Blending

Final Panorama

Photo by Marius Tico

Nokia
Panorama Visualization

Trivial method:
- Show the whole panorama on the screen
- Zooming and panning
No Projection Method is Optimal

Zoom

Spherical Projection

Perspective Projection
Solution: Interpolate the Projection Coordinates

Weights are determined by a sigmoid function of zoom factor.
Slide credits

Fredo Durand
Alyosha Efros
Bill Freeman
Marc Levoy
Chia-Kai Liang
Steve Seitz
Rick Szeliski
Marius Tico
Yingen Xiong
...

113