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ABSTRACT  
A true science of data visualizations requires both a theory of perception and of 
computer graphics. However, visualization designers have paid relatively little attention 
to perceptual issues. In this article, I outline how knowledge of human visual perception 
and physiology can lead to more effective visualizations. Bertin's (1983) Image Theory, 
the only comprehensive perceptual theory in the visualization literature, will serve as 
the medium for the discussion. Experimental vision research grounds Image Theory in 
"first-principles" and suggests corrections, modifications and extensions. The resulting 
updated version of Image Theory can serve as a guide to visualization design.  

 
1.0 Data Visualization Is A Joint Function of Computer Graphics and Perception  
"The Purpose of computing is insight, not numbers."  
--Richard Hamming (1962)  
 
The power of computers to collect, store and manipulate numbers has increased 
dramatically since Hamming's pointed observation. Much of this increased power, 
however, is wasted because humans are poor at gaining insight from data presented in 
numerical form. As a result, visualization research takes on great significance, 
offering a promising technology for transforming an indigestible mass of numbers 
into a medium which humans can understand, interpret and explore.  
 
The transformation from numbers to insight requires two stages. As shown in Figure 
1, the first maps from numbers (data/processes) to images by means of some 
algorithmic technique. The second maps from images to insight by means of 
perception. A true science of visualization must incorporate both a formal theory of 
computer graphics and a theory of human perception. However, visualization 
research, like most areas of computer graphics, has focused largely on image 
formalisms and has ignored issues relating to visualization and perception 
(Greenberg, 1988; Blake, 1990; Pun and Blake, 1990). Papers published in 
proceedings of visualization conferences, computer graphics journals, etc. are 
typically written by computer scientists who describe new software for mapping data 
to images but who ignore the mapping from images to perception. They offer neither 
a coherent rationale for the creation of a particular visualization nor any empirical 
validation. They employ no explicit model of perception, relying instead on intuition 



and introspection. In sum, they are concerned only with questions of what could be 
done and ignore issues of what should be done. This is unfortunate, since empirical 
studies repeatedly find that design evaluations based on simple introspection and 
preference are poor predictors of user performance.  

Figure 1 
 
There is a small but steadily growing awareness (e. g., Levkowitz and Herrman, 1992; 
Merwin and Wickens, 1993; Rogowitz and Treinish, 1994) that perceptual issues are 
important for the design of good visualizations. Visualization conferences and 
journals contain increasing numbers of papers on topics such as specification of color 
scales, etc. In spite of this interest, however, there still seems little attempt to develop 
a general perceptual theory based on "first-principles" from human vision nor to use 
the vast body of existing perceptual data to guide design.  
 
This article introduces visualization designers to relevant "first-principles" perceptual 
theory and research. An appreciation of basic perception, visual psychophysics and 
physiology can provide first-principles for a science of visualization, and suggest 
ways to develop new visualizations and to improve old ones. It can help move 
visualization from its current trial-and-error methodology to a true science. 
 
To provide a bridge between the worlds of visualization and of vision research, I'll 
focus on Bertin's (1983) "Image Theory." It provides a particularly good interface, 
both because it is the only coherent perceptual theory in the visualization literature 
and because it closely parallels recent theorizing in human vision. 
 
The first section briefly outlines the general problem of multidimensional data 
perception in order to introduce key conceptual issues which will reappear later. The 
subsequent section reviews relevant aspects of Bertin's theory and introduces the key 
concept of the image1, the fundamental perceptual unit of a visualization. The next 
section describes current theories in visual perception, psychophysics and physiology, 
demonstrating the close parallels between Bertin's conceptual framework and current 



ideas in vision research. The discussion is divided into two parts, each covering a 
different area of vision research related to Image Theory. The first outlines relevant 
basic research in visual search/segmentation and demonstrates the great similarities 
between these tasks and data visualization. I show that the distinction between 
"preattentive" and "attentive" visual processing, so central to the search/segmentation 
research, is also a principle issue in data visualization design. The second outlines 
relevant research in psychophysical scaling, which can explain many aspects of Image 
Theory. The goal in both sections is to provide a "first-principle" underpinning for 
Image Theory. The following section uses these first-principles plus additional data to 
interpret, correct and extend Bertin's theory and to suggest some important directions 
for future research. The closing section provides a final perspective on the 
relationship between visualization and vision research. 
 
Before beginning, I want to clarify the scope of the ensuing discussion and to offer 
some disclaimers. First, I focus on visualization of abstract data and processes. Other 
areas of visualization, such as volume rendering, etc., have a somewhat different set 
of perceptual issues. Second, I will only cover a subset of Image Theory. The full 
theory is large and often obscure because Bertin uses idiosyncratic concepts and 
terminology. I will generally use examples from what Bertin calls "diagrams," simple 
XY(Z) graphs, but the concepts discussed below generalize to other forms of 
visualizations, including networks, maps and even symbols. This would be far too 
much to cover, so the discussion is restricted to the most relevant aspects and detail is 
omitted. Lastly, the perceptual literature is vast and complex. For the sake of clarity, 
I'll ignore many details and skirt many contentious issues. 

 

2.0 Data Visualization is Limited by the Number of Data Dimensions 

A good starting point for examining visualization and perception is the question: why 
is perception of multidimensional data a difficult problem? The obvious answer is that 
we can readily perceive data values for two variables represented on spatial axes, but 
we have difficulty at higher dimensions.  

There have been several strategies for circumventing this limitation. One is divide-
and-conquer: provide a number of different views of the same data. For example, data 
could be decomposed into an array of relatively simple 2 or 3-D graphs (e. g., 
Cleveland, 1984) with different axes. A more recent technique is to present different 
views in different formats or granularities. In either case, the observer must integrate 
information which has been distributed over space and/or time. This method is 
constrained by human processing limitations in attention and memory.  

A second technique is to represent multidimensional data by means of "emergent 
features" (e. g., Montgomery and Sorkin, 1993). For example, one method is the use 
of Chernoff faces, which code individual data dimensions as facial features. The 
single features presumably combine to produce an emergent feature, facial expression, 
which is a nonlinear combination of the individual features.  

The last, and most common technique, is to maintain the high dimensionality of 
representation but to code some data dimensions into nonspatial features, such as 
combinations of color, shape, size, brightness, etc. As discussed below, however, this 
method is usually limited to a single nonspatial variable.  



While the success of these strategies varies, it seems clear that humans perceive data 
coded in spatial dimensions far more easily than those coded in nonspatial ones. Since 
there are only two spatial dimensions directly represented in the retinal image, 
observers have problems visualizing data in more than 2 spatial dimensions. The third 
spatial dimension may be added by means of depth cues although its usefulness is 
limited (see below). Beyond this point, however, multidimensional data are very 
difficult to perceive. This is the basic problem which visualization techniques must 
overcome.  

In attempting to better represent high dimensionality data, it might be worthwhile to 
consider why this constraint exists. After all, there is no a priori reason to expect a 
limitation in the number of dimensions which we can process simultaneously or to 
treat the dimensions of space any differently from nonspatial dimensions such as 
shape, hue, brightness, etc. Instead of mapping dimensions to spatial axes, for 
example, a visualization could be constructed by mapping one data dimension to 
brightness, another to color, third to orientation, etc. Data could then be depicted by 
different combinations of brightness, color and orientation of single lines. In practice, 
of course, this does not work very well.  

Why are data best represented on spatial axes and why are we able to perceive only a 
limited number of data dimensions at single time? A satisfactory explanation must in 
turn answer several more questions: Are spatial dimensions somehow more 
fundamental than nonspatial ones? Does the visual system use different sets of rules 
for coding spatial and nonspatial image attributes? If so, what are the differences and 
can they be overcome?  

Bertin (1983) attempts to answer some of these questions within the context of Image 
Theory. The perceptual literature also provides partial answers to these questions by 
revealing how the visual system itself deals with the complexity of high dimensional 
images. In doing so, it suggests methods to improve data visualization.  
3.0 Image Theory Is an Informal Perceptual Theory of Data Visualization  
Bertin's Image Theory is an ideal medium to demonstrate the close connection 
between visualization research and the basic literature in perception, psychophysics 
and physiology. Bertin's interest is the problem of creating good multidimensional 
data visualizations. To serve as a guide, he formulated a theory of graphic perception, 
which was not explicitly based on any systematic, empirical observations but which 
was still scientific in form: it analyzes visualizations into a set of primitive 
components and specifies procedures for combining the primitives to create good 
visualizations.  

Bertin's key concept is the image, from which the theory derives its name. Roughly 
speaking, an image is the fundamental perceptual unit of a visualization. An ideal 
visualizations will contain only a single image in order to optimize "efficiency," the 
speed with which observer can extract the information. Most of the theory is an 
attempt to explain how to create visualizations with a single image. In order to 
understand the concept of the image, however, it is first necessary to explain some 
concepts which Bertin uses.  

 



3.1 Image Theory Specifies Graphic Primitives and Procedures for Data 
Visualization  

The fundamental primitives of his theory are "invariants," "components," 
"correspondences," and "marks." Every graphical data representation consists of two 
primary parts, variational concepts called "components" and an "invariant," which is 
used to relate the components. These relations are depicted by mapping the 
components to some visual graphic variable and placing a "mark" on the visualization 
to show "correspondences" between/among components. Marks come in three 
different types, or "implantations," point, line and area.  

The viewer extracts information in three stages. The first is "external identification," 
where the viewer determines what components are being represented in the 
visualization. The next stage is "internal identification," the process of determining 
which components are mapped to which visual graphic variables. Lastly, the viewer 
perceives the correspondences between/among components. It is the correspondences 
which actually convey information.  

Figure 2 
 
The simple example of a diagram shown in Figure 2a will clarify this schema. The 
components are height and weight, which have been mapped to the Y and X 
dimensions of space, and the invariant is the population of individuals. Each data 
point on the graph represents a "mark," showing the correspondence between a 
particular height and weight - a relation between the variational components. In terms 
of Bertin's three stages of information extraction, 1) external identification is the 
realization that the graph is showing something about height and weight, 2) internal 
identification is the perception that the height component is mapped to the vertical 
axis of the plane and weight to the horizontal axis, and 3) perception of the 
correspondences is the noting that the data point is located at a particular intersection 
of X and Y visual variables.  



Image Theory, however, goes far beyond simply specifying a set of primitives and an 
explanation for the way observers read a data visualization. It also offers a model that 
describes the characteristics of optimal data visualizations and suggests methods for 
their construction. Both model and methods are stated in terms of perception.  

3.2 Visual Variables Fall into Two Distinct Classes  

According to Bertin, there are two functionally different classes of visual variable, 
planar and retinal. In Figure 2a, height and weight components are mapped to the two 
spatial dimensions of the "plane," the "planar" variables. In addition, components may 
be represented by six "retinal variables," size, color, shape, orientation, texture and 
brightness2 (cf. Cleveland, 1984). Each retinal variable can be used with the three 
types of implantation.  

In a typical visualization, the retinal variables allow representation of a third 
component. In Figure 2b, for example, the height/weight diagram might be extended 
to a third dimension, gender, by adding a brightness component and representing 
males and females with different brightness marks. A mark then would show a 
correspondence among three components, height, weight and gender, which have 
been mapped to three graphic variables, the two planar dimensions plus one retinal. 
Bertin believes that efficient visualization is limited to three component 
visualizations. It is not possible to create an efficient four component visualization by 
adding a second retinal variable: you could not, for example, add a component for 
country of birth by coding each mark with shape reflecting nationality. Both the three 
component limitation and the concept of "efficiency" are central to Bertin's theory, so 
I will return to them shortly.  

Different classes of visualization can be distinguished by the correspondences which 
may be portrayed on the plane. A diagram, such as shown in Figure 2, can depict 
correspondence between all members of different components, but not between 
members of a single component. Figure 3a shows a network, where the nodes are the 
component members and the lines show correspondences. The defining property of a 
network is this additional possibility of portraying any and all correspondences 
between elements of a single component. In this case, and in the case of maps as well, 
the two planar dimensions represent a single component. Addition of a second 
component would require a retinal variable. In Figure 3b, the lines have different 
dashing, a line implantation of the texture variable.  
 

Since there is only one planar variable, Bertin says that networks and maps are 
therefore limited to two components. It is not possible to simply use a second retinal 
variable as a substitute for the second planar variable. Bertin implies that there is a 
fundamental difference between planar and retinal variables and that they are not 
interchangeable.  



 Figure 3 

 

3.3 Good Visualizations Use Variables with Proper "Length" and "Level of 
Organization"  

As we shall see, a clue to this fundamental difference lies in Bertin's notion that there 
must be a match in both "length" and "level of perceptual organization" between a 
component and the visual variable used to represent it. Bertin believes that the major 
problem of most data visualizations is the choice of visual variables with 
inappropriate length or level of organization.  

3.3.1 Variable "Length" is the Number of Perceptible Steps  

Length refers to the number of categories or steps (distinguishably different colors, 
brightness levels, etc.) A visual variable must have a length equal to or greater than 
the component it represents. If the number of data categories exceeds the number of 
distinguishable steps in the visual variable, then the data could not be properly 
perceived. For example, if a scale permitted 10 different data values and the visual 
variable provided only 8 distinguishable steps, the observer must perceive some of the 
different data categories as being identical.  

A major problem for the visualization designer is to match the data to a visual 
variable with the correct length. Moreover, the designer must be sure that the steps in 
the visual variable (the brightness increments, etc.) were all distinguishable. Bertin's 
solution to this problem is to create of log scales. As will be discussed later, however, 
the usefulness of this approach is unclear because length varies with context.  

3.3.2 "Level of Organization" Is the Level of Data which a Variable May Represented  

Level of perceptual organization specifies the type of data scale, nominal, ordered, or 
ratio, which each visual variable can portray (Table I). That is, suppose the goal is to 
allow the viewer to extract ratios from the visualization, e. g., to immediately see that 
one value is twice another. The component must then be represented by a visual 
variable in which a doubling the variable's physical magnitude produces a doubling of 
perceived magnitude. Brightness could not be used, for example, because doubling 
intensity produces only about a 1.4 factor increase in perceived brightness. Bertin 



suggests that such failure to properly match the component and visual variable level 
of organization is the major single source of error in visualization design. An 
important aspect of his theory is that this error cannot occur when using the planar 
variables; they can be perceived at all levels of organization and therefore represent 
any component.  

 

Table I: Original Bertin 
  Associative Selective  Ordered Quantitative 

Planar Yes Yes Yes Yes 
Size   Yes Yes Yes 
Brightness   Yes Yes   
Texture Yes Yes Yes   
Color Yes Yes     
Orientation Yes Yes     
Shape Yes       

 

Associative Organization  

Bertin subdivides the nominal scale level into two subcategories, associative and 
selective.  

 

 Figure 4 

 
Associative perception is the lowest organization level, allowing grouping of all 
elements of a variable in spite of different values. For example, Figure 4 shows 
another version of the height/weight graph, with additional components represented 
by marks of different shapes (gender) and brightness (nationality). Shape is 
associative because the observer automatically groups different shapes together. If 
you look away and then glance quickly back at the graph, data points group by 
brightness, and shape differences are ignored. This makes the relationship among 
height/weight and nationality readily apparent. On the other hand, brightness is not 
associative because observers cannot easily ignore different values. In Figure 4, it is 
much harder to distinguish different shapes and to ignore brightness differences. As 
result, viewers will find it much more difficult to visualize the relationship among 
height, weight and gender. According to Bertin, planar dimensions, texture, color, 



orientation (point and line implantations only) and shape are associative while size 
and brightness are not.  

Selective Organization  

The next higher level, "selective perception," is the flip side of association. It permits 
the viewer to select one category of a component, perceive locations of objects in that 
category and ignore others. In Figure 2b, for example, the observer can visually select 
either the males or females by attending to either bright or dark marks. In Figure 4, 
observers cannot select shape, i. e., cannot select square or circle. Visual variables 
allowing selection include the planar variables, size, brightness, texture, color and 
point and line orientation implantations. Shape is the only variable which cannot be 
used for selection. 

 Figure 5 

The concepts of associative and selective organization have implications for a wide 
range of issues in data visualization, such as the presentation of multiple data views. 
Figure 5 shows a typical example. One window shows data in graph form while the 
other shows a table. Which graph goes with which table? It's obvious if the two views 
are linked by color. If the informational view in the right window had a different color 
than it's corresponding object in the left view, the viewer will incorrectly form a 
nominal scale grouping. The message is clear: different views of the same data should 
be presented with the same values of variable at the selective level of organization.  

Ordered Organization  

Associate and selective perception provides only nominal scale classification. Bertin 
suggests that some variables permit an "ordered" organization, which allows the data 
to be ordinally ranked. Observers can see that one value of a variable represents a 
larger or smaller quantity than another. In Figure 2a, for example, increased age could 
be represented by data points with increased brightness. In this case, it would be 
possible to make judgments about relative height/weight of older and younger people. 
Bertin considers the planar variables, brightness, size and texture variables as ordered 
while excluding shape, color and orientation.  

Quantitative Organization  

The highest level of organization is "quantitative" which permits direct extraction of 
ratios, without need of consulting a legend, etc. That is, the ratio of variable values 



maps directly to the ratio of the data values. In figure 2a, if age were represented by 
data points of different size, which is a quantitative variable, the viewer could 
immediately see which individuals were twice as old as others. While ordered data 
permit only relative magnitude of the represented quantities, quantitative variables 
support perception of ratios. Only size and the planar dimensions are quantitative3.  

3.4 "Efficient" Visualizations are Single Images  

The relation of different visual variables to their levels of perceptual organization 
plays a critical role in Bertin's concept of image. Bertin emphasizes the difference 
between effortless and effortful organization. For a variable to offer a specific level of 
organization, a viewer must be able to perceive the level of organization without close 
scrutiny. Bertin notes that perception must be "immediate," and not necessitate 
scanning "sign by sign" through the marks. Throughout his work, Bertin stresses that 
good visualizations should permit "immediate" information extraction at a single 
glance with no need to move the eyes or attention. This quality of a visualization is its 
"efficiency" - how long it takes to perceive the required information. The best 
visualizations would permit critical information to be extracted at a glance, with no 
sign by sign scrutiny and ignoring all irrelevant correspondences. He uses the term 
image to refer to the portion of the visualization which "the eye can isolate ... during 
an instant of perception" and which allows the viewer to "disregard all other 
correspondences." As already noted, the image is limited to a maximum of three 
component correspondences in diagrams and two component correspondences in 
networks and maps.  

Visualizations with four or more components are not efficient because they require 
integration across images. In Figure 4, for example, an observer could not 
immediately see information on Laotian males, since four components are involved: 
the two planar dimensions and two retinal components, brightness and shape. Such 
visualizations would be less than optimal because they contain two images. The 
viewer would have to pick out a particular combination of shape and brightness, a 
task that cannot be performed with a glance but that would require effort and the 
movement of attention sign by sign.  

To summarize, Bertin suggests that viewers extract information from visualizations 
through perception of correspondences between variables representing different data 
dimensions (components). There are only 8 variables, 2 planar and 6 retinal, available 
to portray components. Further, highly efficient visualizations, images, are restricted 
to visualizations containing a maximum of two planar and one retinal variable. Lastly, 
as summarized in Table I, different variables support different levels of immediate 
perceptual organization. It is striking that only the planar variables permit all levels of 
organization, suggesting that spatial dimensions have a special role in data 
visualization.  

Bertin bases his theory solely on his introspection and makes no attempt to provide 
any empirical data support. Moreover, it is a performance theory, with no grounding 
in perceptual or physiological research. It places the locus of control and explanation 
for behavior in the image rather than in the observer. In contrast, psychology and 
physiology explain perception by processes within the viewer. This subtle conceptual 
distinction is a major stumbling block to understanding the perceptual literature and to 
moving from a shallow to a deep theory of visualization. A basic knowledge of these 



processes would be helpful in predicting the behavior of a viewer to a new 
visualization.  

Next, I will attempt to ground Bertin's theory in first principles of perception. The 
discussion focuses on data and theory from visual perception, psychophysics and 
physiology, which are most relevant to the problem of perceiving correspondences. 
I'll avoid much mention of external and internal identification since they both involve 
meaning and therefore higher level cognitive processes. Instead, I'll focus on two 
lower level aspects of Bertin's theory, each closely connected to a particular area of 
vision research. The first is Bertin's ideas about selective and associative organization 
and the 3 component limitation for constructing images. This part of Image Theory 
parallels vision research in preattentive search and texture segmentation. The second 
is Bertin's views on ordered and quantitative organization and the method for 
determining length. The psychophysical scaling literature is concerned with virtually 
the same issues.  

It will be clear that most of Bertin's intuitions, although vague in many respects, are 
well founded and, with some qualifications, run parallel to current research theory. 
My ultimate goal is to show how a grounding in basic vision research 1) permits a 
better, first principles, understanding of Bertin's theory, 2) suggests extensions and 
modifications and 3) can guide development of more efficient visualizations. 
Specifically, I will show that Bertin is incorrect about both the three component 
limitation to efficient visualization and the organization level permitted by several 
retinal variables. In addition, I will discuss the likely properties of additional retinal 
variables, flicker, motion and binocular disparity, which are currently available 
through more sophisticated computer graphics.  
 
4.0 Vision Research Theory Supports Bertin  
Most biological vision theories suggest that visual processing occurs in three steps: 1) 
formation of the retinal image, 2) decomposition of the retinal image information into 
an array of specialized representations and 3) reassembly of the information into 
object perception. The visual world is first coded as an image which produces activity 
in an array of retinal photoreceptors. The image is multidimensional in the sense that 
it contains information about a large number of image properties, such as color, shape, 
motion, etc. The processing of such complex data is an intractable problem (see 
Green, 1991 for a more detailed discussion), so the visual system decomposes the 
image into an array of simpler feature representations which can then be processed in 
parallel by different portions of the brain. At some later stage, the visual system 
reassembles the information to produce a coherent perception of the world. In short, 
vision researchers attempt to understand the brain, like any complex system, by means 
of a divide-and-conquer strategy: the brain as a collection of quasi-independent 
modules which perform different visual functions. Understanding visual processing 
reduces to a matter of specifying both the nature of the functional modules and their 
interactions.  

Physiological data support the notion that the brain contains areas specialized for 
specific image features. Livingstone and Hubel (1988), for example, suggest that the 
brain contains 3 processing "streams," each containing neurons sensitive to different 
image attributes with one, for example, tuned to color, another to motion, etc. While 
neurons in each stream are tuned to a different image attribute, each has a spatially 



limited receptive field. Space (planar dimensions) is therefore the only attribute to 
which all neurons are sensitive. However, the picture presented by Livingstone and 
Hubel is probably far too simple, and the physiological basis for such distinct feature 
modules is becoming less compelling (deyoe and van Essen, 1988; Zeki, 1991; 
Schiller, and Logothetis, 1990; Merigan and Maunsell, 1993). However, it serves as a 
useful first approximation.  

If the retinal image information is decomposed into separate feature representations, 
then the great mystery is how the visual system manages to reassemble features into 
an object. Attneave (1974) succinctly stated the commonly accepted answer when 
discussing a display containing a blue circle and a green triangle:  

"If, as we have reason to believe, color and form are processed in separate parts of the 
nervous system, why does one not simply perceive circle, triangle, blue, green without 
knowing which form has which color? The simple answer, I think, is that blue and 
circle are tagged to the same spatial location." (page 109).  

According to Attneave, then, spatial location is the attribute which holds retinal 
features together when time comes for reassembly. In Bertin's terms, space is special 
because location is the only attribute which all visual modules share, making it 
optimal for depicting correspondences.  

4.1 Visualization Design Requires an Understanding of Preattentive Vision  

Studies of visual search and image segmentation have also provided strong support 
for the notion that location glues together separate feature representations. This 
research has focused on one basic phenomenon: observers can instantaneously and 
effortlessly decompose some images into its constituent objects while other images 
require a slow and arduous scanning to locate objects. Why are some images instantly 
processed while others require time and effort and what does this reveal about the 
underlying organization of the visual system? To answer these questions, 
experimenters test observers with a variety of images in order to determine the 
conditions under which the effortless and effortful perception occurs. The studies 
have generated several theories of visual processing and visual representation.  

In the basic paradigm, the observer detects the presence of a "target" element (or 
sometimes a group of elements - texture segmentation) embedded in a field containing 
various numbers of "distracters." The targets differ from the background distracters by 
one or more attribute, such as color, orientation, etc. The basic finding is that, under 
some circumstances, the observer seems able to detect the target (or segment the 
image) effortlessly - as if s/he were processing the entire visual field in a single 
automatic and parallel operation. This is often termed "preattentive" search because 
there is no need to focus attention on specific objects in the image: the target simply 
seems to "pop out." On other occasions, the observer must find the target by 
purposefully moving attention through space and serially scanning each object in the 
field.  

The dichotomy of preattentive and attentive perception is clearly analogous to Bertin's 
distinction between immediate and sign by sign perception4. Moreover, other authors 
have similarly noted the importance of such distinctions. Cleveland (1984), for 
example, has noted that "elementary graphical-perception tasks," the preattentive 
perception basic graphical elements, underlies data visualization. He even created a 



list of basic tasks which overlaps significantly with Bertin's retinal variables. 
Abarbanel (1993) suggested that visualization can be defined as the substitution of 
"preconscious visual competencies" for "conscious thinking." Woods (1991) further 
said that "If the mental activities required to locate base data units are not automatic, 
but require mental effort or capacity, they may disrupt or divert...the main line of 
reasoning." The terms, "preattentive," "immediate," "preconscious" and "automatic" 
all highlight the necessity of designing displays so that the viewer can effortlessly 
perceive the fundamental visual elements, i. e., images.  

A science of visualization will require a thorough understanding of the conditions 
which produce this preattentive, effortless processing. Fortunately (or unfortunately) 
there is a massive literature on this topic (see Green, 1991 for a partial review). To a 
first approximation, search is preattentive and parallel if 1) the target and distracters 
differ on a single "feature" such as color, orientation, etc. and 2) the difference in 
feature value (brightness, color, etc.) is great enough. If the target is defined by some 
combination of features (e. g., red and horizontal), then search becomes slow and 
requires effort.  

 

Figure 6 
 
Figure 6 illustrates the difference between feature and conjunction search. The target 
(the odd item) is easy to find because it differs by a large amount in color (6a) in one 
case and orientation (6b) in the other. It is not even necessary to know in advance 
what the target is because of the preattentive pop out effect. On the other hand, search 
becomes serial and effortful if the observer must detect a "conjunction" of visual 
variables. In Figure 6c, the target is defined by a particular combination of orientation 
and color - horizontal and red. It no longer pops out, but requires a serial visual scan 
from item to item. The introspective reader will note that s/he had to move attention 
from location to location in order to find the target.  
There a several theories which attempt to explain why some searches are preattentive 
and others require focal attention. The most influential, "feature-integration theory" 
(Treisman and Gelade, 1980) proposes special roles for space and attention. As 
suggested by Attneave, the brain represents individual features in different feature 
modules. That is, there is a color module, orientation module, etc. The feature 
modules contain no information on location, which resides in a "master map of 
locations." Other theories (Sagi and Julesz, 1985; Green, 1991, 1992), however, 
suggest that location is represented in the modules. Regardless of the exact theory, the 



generally held belief is that preattentive feature search can occur by examining only 
the contents of a single feature representation. Serial conjunction search, on the other 
hand, requires the observer to integrate features of a single object by reference to their 
common spatial coordinates. The integration is actually performed by focusing 
attention at the particular spatial location. 

Figure 7 highlights key aspects of this theory. It shows the hypothetical feature 
modules for orientation and color, each represented in a different spatially mapped 
portion of the brain. Suppose the image has diagonal green lines, vertical red lines and 
a single diagonal red line. The visual system presumably decomposes the image into 
separate modules for orientation (A) and color (B). The viewer can always perform 
effortless feature selection with a single module. For example, the viewer can select 
the vertical marks without consulting the color module. In feature selection the target 
pops out, so there is no need to glue color and orientation together.  

Figure 7 

If, however, the selection must be based on a conjunction of features, such a 
horizontal and red,  the task cannot be accomplished using either feature module 
alone. Instead, the viewer must combine the modules together before the target(s) 
become detectable.  

It should be obvious by now that the most popular search theories run parallel to 
many aspects of Bertin's Image Theory. I've already noted the similarity of the 
immediate/sign-by-sign and preattentive/attentive dichotomies. Moreover, the 
difference between three and four component visualization parallels the distinction 
between feature and conjunction search. Recall Bertin's assertion that you can not 
create an image, a correspondence which can be perceived immediately, with more 
than three variables - two planar and one retinal. Although the search paradigm is not 
a exactly a visualization task, there are close similarities. Figure 6 does not have 
actual axes representing components, but locations of the objects still have implied 
components, the X and Y spatial coordinates. By extension, the top two panels would 
be analogous to Figure 2a. They are 3 component visualizations with the two planar 
variables (X and Y coordinates) and orientation (6a) and color (6b) as the retinal 
variable. It has been shown (Green, 1992) that if an observer can detect a target 
preattentively, s/he knows its location in XY space. In other words, s/he 
immediately/preattentively perceives the correspondence represented between the X 
and Y planar variables.  



However, this is only possible with a single feature, i. e., 3 component, searches. They 
are single images to Bertin because they use a single retinal variable. The conjunction 
search in 6c, which is analogous to the data visualization in Figure 4, requires effort 
because there are four components, 2 planar dimensions, orientation and brightness, 
so that the observer must integrate across two feature modules, or as Bertin would 
say, across two images. In short, highest efficiency visualization only occurs when 
judgments can be made using preattentive vision, which in turn occurs only for 
feature (3 component) searches for diagrams.  

To summarize, vision research provides first-principle explanations for many aspects 
of Image Theory. The three component limit is due to the way image features are 
represented in the nervous system and the difficulty of conjunction search. Planar and 
retinal variables are in fact different because spatial location ties all other attributes 
together and is hence naturally a better medium for depicting correspondences. 
Below, I add one more distinguishing attribute to the plane - it permits quantitative 
perception because it is seen as "veridical."  

4.2 Psychophysical Scaling Explains Why Variables Have Different Levels of 
Organization  

The creation of a single image requires that 1) the visualization contain no more than 
one retinal image/feature and 2) the visual variables have sufficient length and support 
the necessary level of perceptual organization. While the search/segmentation 
literature provided a first-principles explanation for the first point, there is another 
area of perception research, psychophysical scaling, which can similarly provide an 
empirical context for the second.  

4.2.1 Stevens' Law Explains the Distinction Between Ordered and Quantitative 
Variables  

Psychophysical scaling examines the psychometric function relating physical stimulus 
intensity to its perceived magnitude, or "sensation." Imagine, for example, that the 
goal is to learn the relationship between light intensity (physical variable) and 
apparent brightness (sensation). The observer views a series of lights differing in 
intensity and judges apparent brightness of each5. The results of such a study are 
typically expressed as a graph (Figure 8a) where sensation is plotted against physical 
intensity.  

When psychophysicists perform such experiments with different physical dimensions, 
the curves typically fall into one of the three categories shown. Some curves are 
linear, meaning that sensation grows in direct proportion with physical intensity. In 
these cases, a doubling of physical intensity produces a doubling of sensation, so 
ratios are maintained. This is required for Bertin's quantitative perception where a 
doubling of the represented quantity should produce perception of doubled 
magnitude.  

Unfortunately, linear curves are rare. Most physical dimensions produce nonlinear 
scales, with compressive functions being the more common result. In this case, 
doubling physical intensity does not produce proportional increases in sensation. As 
shown in Figure 8a, sensation grows more slowly than physical intensity, so that a 
doubling of intensity is perceived as a far smaller increase in brightness. Moreover, a 
doubling of intensity from 10 to 20 and one from 40 to 80 will be perceived as 



different relative changes. Physical variables producing such nonlinear scales would 
not permit quantitative level organization.  

 Figure 8 

The relationship between sensation and intensity is frequently quantified by Stevens' 
Power Law:  

 

where psi is the perceived magnitude or "sensation," phi is the physical magnitude of 
the stimulus, k is a coefficient determined by the units of measurement and beta the 
exponent gives the slope of the line, when plotted on log-log coordinates, as in Figure 
8b. This figure says that equal ratios of sensation are proportional to equal ratios of 
intensity6.  

The exponent and hence slope of the line in Figure 8b have a value of one when the 
relationship between sensation and physical magnitude is linear. Research (e. g., 
Gescheider, 1976; Spence, 1990) has shown that the only variable which reliably 
produces a slope of one is spatial extent, e. g., judgments of line length, etc., dovetails 
nicely with Image Theory, which states that the only quantitative variables are the 
planar dimensions and size. These are the only variables supporting quantitative 
organization because they are spatial extent judgments and hence are the only 
variables with psychometric power functions having an exponent of one, or 
"unbiased" in Cleveland's (1984) terminology. This is another special property of 
space.  

The scaling data conversely explain why brightness is ordered but not quantitative. 
Studies always find brightness to be a compressive function. It is therefore not 
possible to directly perceive physical ratios - doubling the intensity of a mark does not 
double its perceived brightness. However, the brightness function is monotonic, so 
ordered organization is supported. The only caveat is that viewers must be able to 
discriminate the difference between brightness levels.  

4.2.2 Weber's Law May Determine Length  



Bertin notes that a visual variable must have sufficient length, i. e., be divisible into 
enough distinguishable intervals to represent the desired component. But how big 
must these steps be? How big a brightness difference is needed, for example, to 
permit preattentive selection based on intensity?  

Bertin discusses methods for determining number of steps, advocating creation of log 
scales. At first glance, psychophysics seems to support this idea, since human 
discrimination threshold functions are generally described by Weber's Law:  

 

where I is intensity of the physical stimulus, delta I is increment threshold needed to 
perceive a "just noticeable difference" (JND) and K is a constant fraction which 
differs across variables. This relationship suggests that JND's should be equal log 
steps and that higher K means larger absolute step sizes and shorter length7. To create 
a proper length scale, simply start at the lowest I value and add one JND for every 
data category.  

Recall, however, that the step size must be preattentively perceptible. Most perceptual 
studies of Weber's Law are conducted under attentive processing, which does not 
correctly predict JND's needed for preattentive search. For example, discrimination of 
orientation requires only a 1o to 2o difference under focused attention, yet preattentive 
segregation requires orientation differences of about 12-15o (Bergen and Julesz, 
1982). It is not clear whether a JND function for preattentive search would necessarily 
follow Weber's Law as Bertin suggests. If it does, however, then the K value must be 
much greater than for attentive perception. Apparently the K value would vary with 
the type of judgment. Bertin implies this fact when noting that even for the same 
variable, length is shorter for associative/selective than for ordered/quantitative 
perception.  

There is unfortunately little psychophysical work on the form of the psychophysical 
law for preattentive processing (but see Nagy and Sanchez, 1990, on color). However, 
the Bergen and Julesz orientation estimate is similar to that found using many other 
psychophysical techniques (e. g., Green, 1984) and is likely due to the bandwidth of 
cortical neurons with oriented receptive fields. Perhaps length and JND estimates for 
other variables can be can be obtained from existing psychophysical and 
physiological research.  

In sum, the scheme suggested here predicts that the level of perception supported by a 
dimension depends on the shape of its psychometric function: 1) visual variables 
producing linear curves (exponent of 1) will permit both ordered and qualitative 
perceptual organization, 2) variables producing compressive (or accelerating) 
functions permit ordered perception but not quantitative perception and 3) variables 
which cannot be scaled for magnitude, such as shape, can be neither ordered not 
quantitative. Lastly, the accuracy of Weber's Law for determining length and step size 
is still unclear. 
 
 

 



5.0 Image Theory Can be Extended Beyond Bertin  

The picture painted so far suggests that vision research generally supports Image 
Theory. However, there are also research results to suggest that Image Theory 
requires some modification. First, Bertin's assignment of retinal variables to levels of 
organization is neither complete nor entirely accurate. Some visual variables can have 
levels of organization in addition to those suggested by Bertin. Moreover, advent of 
computer graphics permits use of several new visual variables which Bertin does not 
discuss. Second, there are several secondary perceptual effects which complicate 
direct application of Image Theory. Third, and perhaps most importantly, Bertin's 
belief that images are always limited to three components is false.  

5.1 Levels of Organization  

In Table II, I use research data to propose corrections and extensions to Bertin's 
original level of organization assignments (Table I). Most of these modifications are 
based on the kind of search and scaling experiments described above.  

 

  Associative Selective  Ordered Quantitative 
Planar Yes Yes Yes Yes 
Size   Yes Yes Yes 
Brightness   Yes Yes Yes-if scaled 
Texture Yes Yes Yes   
Color (Hue) Yes Yes Yes-limited   
Orientation Yes Yes     
Shape Yes Yes     
Motion:Velocity   Yes Yes Yes-if scaled 
Motion:Direction   Yes     
Flicker:Frequency   Yes Yes Yes-if scaled 
Flicker:Phase   Yes     
Disparity   Yes Yes   

Table II: Updated Bertin 

 

 

5.1.1 Shape can be selective  

There has been much research (e. g., Treisman and Gormican, 1988; Julesz, 1984) 
designed to identify the primitive features which are represented in independent 
modules and which support preattentive, 3 component search. The results show that 
the list of primitives largely reflects those coded by the brain in primary visual cortex. 
Coincidentally, the list also agrees well, but not perfectly, with Bertin's list of retinal 
variables.  

For example, Bertin claims that shape is always associative and never selective, but 
the literature is full of studies which contradict this assertion. While Figure 4 showed 



that squares and circles are indeed associative, Figure 9 shows a simple example of 
selection by shape based on "X" and "O". In fact, there are a large number of shapes 
which are selective but not associative (Julesz, 1984; Treisman and Gormican, 1988). 
Other data (Wang, Cavanagh and Green, 1994) further suggest that given sufficient 
practice and experience, almost any shape difference can support selectivity.  

 Figure 9 

It is obvious why Bertin claims that shape was associative but not selective. He 
defined shape within a very narrow domain, solid shapes such as filled triangles, 
squares, circles, etc. These shapes are highly similar because most of their energy is in 
the low "spatial frequency" band, which dominates rapid perception (Green, 1984). 
Unfortunately, space do not permit much explanation here of the spatial frequency 
concept, but there are many references on the topic (e. g. De Valois and De Valois, 
1988).  

Why are some shapes associative while others are selective? While the answer is not 
entirely clear, the question has been approached by creating computer models (e. g., 
Graham, Sutter and Venkatesan, 1993) of the visual system. The image is typically 
processed by a series of cascaded linear (spatial frequency) and nonlinear (edge, etc.) 
filters which presumably correspond to neuronal levels in the brain. The decision as to 
whether two shapes/textures are associative or selective is determined by the 
similarity of their outputs in the model. In theory, such a model should make it 
possible to predict whether shapes/textures would be associative or selective. The 
applicability of such models to predicting immediate visualization of diagrams is 
unknown.  

5.1.2 Color can be ordered  

Color consists of three properties, hue, saturation and brightness (or hue, chroma and 
lightness). Bertin's discussion of color is incomplete because, while distinguishing 
brightness and color, he fails to separate hue from saturation. In contrast to Bertin's 
assertions, moreover, each variable permits ordered perceptual organization under 
some conditions.  

First, it is true that hue is in general a nominal variable; red, green, blue, etc. do not 
form an ordered scale. However, over small ranges, hue can be ordered. For each hue, 
there is a specific example, called a "unique hue," which is perfect in that it is not 
tinged by any other hue. For example, unique yellow contains no trace of either red or 
green. In a sense, it is the most intense sensation of yellowness possible. An ordered 
scale of yellow could therefore be constructed starting around unique yellow and 
extending to either (but not both) unique red and unique green. Observers can then 
readily order hues along the yellow-green or yellow-red continuum. For example, 
there is a common color vision exam, the Farnsworth-Munsell Test, which requires 
observers to properly order colored chips in this way. Second, saturation, the amount 



of white mixed with a spectral, i. e., the purest, hue, is also an ordered variable. 
Viewers can readily order lights by increasing amounts of saturation.  

5.1.3 Brightness can be "quantitative"  

Brightness is ordered but not quantitative because it produces a psychometric function 
with an exponent less than one. If this idea is correct, then it should be easy, using 
existing psychophysical data, to promote brightness to a quantitative level of 
organization by rescaling the intensity axis.  

The solution is to scale the X axis in Figure 8a so that the curved line becomes 
straight, i. e., make the steps at the low end of the scale larger. The exponent of the 
brightness power function varies somewhat with exact conditions but is usually 
somewhere around 0.5 - a square root law:  

The nonlinear gamma built into most CRT monitors rescales brightness-grey level 
function to compensate for the visual brightness nonlinearity. However, degree of 
compensation is often overstated for two reasons. First, the visual system’s brightness 
exponent varies with conditions and can be as low as 0.33. Second, CRT monitor’s 
effective gamma varies with viewing conditions, such as ambient light and the exact 
monitor brightness and contrast settings. Never the less, brightness will approximate a 
quantitative variable on a computer screen but not on a printed page.  

5.2 Additional visual variables  

Although Bertin recognizes that computers present new opportunities for data 
visualization, his discussion of retinal attributes is limited to those generally available 
by print technology. The flexibility of computers and CRT displays opens 
opportunities for going beyond Bertin. First, I have already described how level of 
organization for some retinal variables can be upgraded by rescaling. Second, data can 
be displayed by means of several new visual variables, including motion, flicker and 
disparity (stereo depth). Using the analysis described above, psychophysical data 
should be able to predict the level of organization supported by these new variables 
(Table II).  

5.2.1 Motion  

One new retinal variable is motion, which can be split into two subvariables, velocity 
and direction. Both are undoubtedly selective, as demonstrated by studies showing 
preattentive search based on motion differences8. Further, the Gestalt principle of 
"common fate," says that humans interpret objects moving or flickering together as a 
single segment (e. g., Green and Odom, 1991). Marks which move together will easily 
be selected from those with differing motions.  

It is unlikely that motion is associative. Objects with different motions are generally 
perceived as lying on different surfaces. Segmentation of an image into constituent 
surfaces is perhaps the earliest and most primitive perceptual function (Gibson, 1966). 
As a general rule, humans find it exceeding easy to select, but very difficult to group, 
objects appearing to lie on different surfaces. As a result, it is unlikely that marks can 
be associated across different motions9.  

Motion velocity is likely to be ordered, since it is a continuum of magnitude, and 
observers can readily discriminate steps of increasing value. Direction of motion is 



likely not ordered since it is not a variable of magnitude. Finally, velocity is not 
quantitative because it produces a compressive psychometric function. As noted 
above, however, velocity might be made quantitative by appropriate rescaling. Motion 
can also be used to portray depth by means of motion parallax, a highly potent depth 
cue.  

5.2.2 Flicker  

Flicker is another possible variable, but there is surprisingly little relevant research. 
Since the perceptual mechanisms which subserve motion and flicker overlap 
significantly (Green, 1984), it seems likely that flicker would support levels of 
organization similar to those possible with motion velocity.  

Like motion, flicker also has two subvariables, frequency and phase. Flicker 
frequency, the speed of the on-off cycles, is selective by common fate, can be readily 
ordered, and could be promoted to quantitative by rescaling. There are, however, 
some problems with flicker frequency. First, it has very short length. Second, apparent 
brightness varies with frequency (the "Broca-Sulzer Effect"), making these somewhat 
"integral dimensions."  

Phase refers to the relative point in the on-off duty cycle. For example, "in-phase" 
lights come on and off simultaneously. In "counter-phase" flicker, one light becomes 
bright while the other becomes dark and vice versa. Marks of different phase are 
readily selective by common fate. However, phase is not readily ordered. Neither 
flicker frequency nor phase is likely associative.  

5.2.3 Binocular Disparity  

A third new variable is binocular disparity, which can be created by giving the left 
and right eyes slightly different views of the same visualization. In normal viewing 
disparity is not an important cue for judging distance. In fact, humans get little 
absolute distance information from disparity, once objects are more than a few feet 
away. The classic study of Holway and Boring (1941), for example, even found that 
people judged distance more accurately under monocular conditions than under 
stereoscopic viewing.  

Instead, disparity provides good relative depth information, revealing whether one 
object is closer or further than another, and is a very powerful cue for image 
segmentation. Its main role is to help break scenes into meaningful surfaces, so it is 
likely to be poor for association but ideal for selection. Since it provides only relative 
depth information, it is a poor choice to represent quantitative data but good for 
representing ordered data. Moreover, stereoacuity, the discrimination of small 
disparity differences, is one our sharpest senses, suggesting that disparity has 
extremely long length and is ideal then there are many data intervals.  

Lastly, it would be hard to upgrade disparity by rescaling, since the relationship 
between disparity and perceived distance is complicated and varies with individual 
differences in factors such as interpupillary distance, the gap between the viewer's two 
eyes.  

 

5.3 Factors Complicating Image Theory  



Image Theory is meant to be a very general approach to data visualization. While 
research described above has validated it's broad strokes, there are many more recent 
findings which refute the simplistic view of both Feature-integration and Image 
Theory.  

5.3.1 Visual variables are not processed independently  

While feature-integration theory, a virtual analog to Image Theory, captures many 
aspects of visual search and segmentation, there are also contrary data. These are 
reviewed elsewhere (Green, 1991), but I'll just point out one particularly relevant 
problem. If features exist in independent computational modules, then preattentive 
search should not be impaired by orthogonal variation in an "irrelevant" dimension. 
That is, if a scene is to be preattentively segmented by texture, then any unsystematic 
color variation should be "irrelevant." Several studies, however, clearly show that 
orthogonal variation of irrelevant features does, in fact, impair preattentive 
processing. For example, it takes longer to select on the basis of orientation if there 
are color variations which must be ignored (Callaghan, 1989). Bertin does not 
acknowledge that such interaction between retinal variables can occur. In planning a 
visualization of optimal efficiency, variables should be chosen to minimize such 
crosstalk between dimensions.  

Some dimensions interact so strongly that they cannot be separated without great 
effort. Garner (1974) suggested that different sets of visual image variables can be 
classified as "integral" or "separable." Separable dimensions are processed 
independently in preattentive vision. If asked to sort a sequence of pictures containing 
colored dots located in different parts of the pictures, observers can do so quickly 
using either color or location as the relevant variable and easily ignore the other. The 
planar are also dimensions are clearly separable. On the other hand, hue and 
saturation are integral - observers cannot ignore hue when trying to attend to 
saturation and vice versa. If a formalism maps one data dimension to hue and another 
to saturation, for example, then the visualization would not be efficient: users would 
need focal attention to separate the dimensions.  

5.3.2 Association is influenced by "Pragnanz"  

Bertin's discussion of association overlooks several factors which affect the way 
image elements group together. In the late 19th and early 20th century, the Gestalt 
school of perception suggested that human vision is based on the principle of 
"Pragnanz," which says observers have a strong innate predisposition to group image 
elements into the simplest "good form." Bertin notes that the planar and several retinal 
variables are associative. Gestaltists called these the laws of grouping by proximity 
and similarity.  

There are several additional Gestalt grouping principles which can influence the way 
viewers group visual variables. Groupings can be created by "common fate," the 
tendency to move or flicker together, "good continuation", the tendency to perceive 
shallow curves, and symmetry.  

5.3.3 Selective/Associate organization depends on variable values  

Image Theory is complicated by secondary perceptual effects. A good example is the 
"asymmetry effect" in visual search. Research (Treisman and Gormican, 1988) has 



shown that the delectability of a target, whether it supports selective perception, 
depends on it's exact location on the value continuum.  

An example will clarify. Suppose the display contains line segments which are 
oriented vertically or tilted by 45o. Viewers find it easier to locate the tilted lines 
among vertical background items than vertical lines among tilted backgrounds items. 
In Image Theory terms, it is easier to select tilted than vertical lines. Therefore, 
whether a variable is associative or selective depends in part on the exact values 
chosen on a given visual variable.  

5.4 Conjunction searches (four component images) are possible  

Bertin's assertion that images can contain no more than three components is 
seemingly supported by the general difficulty of conjunction search. However, studies 
have sometimes found that observers can preattentively find conjunctions, suggesting 
that four or more component images are possible.  

5.4.1 Motion and Disparity allow 4 component images  

Studies show that a subset of visual variables permits conjunction search. Observers 
can effortlessly search for conjunctions of shape or color with disparity (Nakayama 
and Silverman, 1986) or motion (McLeod, Driver and Crisp, 1988). These searches 
have four components: 2 planar, 1 Bertin retinal variable plus disparity or motion, 
variables which Bertin does not include in his analysis.  

Although there are perspective drawings in his book, Bertin says little about the 
possibility that depth can be an additional image component. The use of depth cues 
such as perspective, shading, transparency, motion parallax or binocular disparity, 
might admit the third dimension as a third spatial variable, allowing four component 
visualizations10.  

There are data which suggest that these depth cues permit images with additional 
components. I have already noted that observers can search for conjunctions of 
binocular disparity and shape or color, which suggests that the third dimension can be 
used as an extra component for selection. It is unknown whether there are any other 
depth cues which could be similarly employed, or whether any could produce a 
quantitative level of organization for the third dimension. There is no reason to 
assume that the Z axis would act like the XY planar dimensions and support all levels 
because the depth spatial dimension is fundamentally different from the planar 
dimensions. The retinal image contains an explicit representation of the plane, but the 
third dimension is available only implicitly and must be computed by the various 
depth cues. As discussed above, depth cues are probably selective and ordered, but it 
seems unlikely that any of the retinal variables which could be used to portray depth 
would be quantitative. It might be best to think of disparity as providing only a "2 1/2 
D", rather than a 3D, visualization.  

5.4.2 Practice can create 4 or more component images  

I've already noted evidence (Wang, et al., 1994) that arbitrary shapes can become 
selective with sufficient experience. Another study (Wolfe and Franzel, 1989) shows 
that observers can preattentively select almost any conjunction of Bertin's retinal 
variables given sufficient practice. Wolfe and Franzel further found that practiced 
observers can sometimes search faster with five components (conjunctions of three 



features) than with four. This suggests the counter-intuitive notion that higher 
numbers of components can produce higher efficiency visualizations.  
 
6.0 Conclusion and References  
I have outlined some basic research on human vision and suggested ways that this 
research could be used to guide data visualizations. Bertin's Image Theory has served 
as a valuable bridge to link the basic perceptual, psychophysical and physiological 
literature and visualization. Many of my proposals are only speculation because there 
has been little empirical research directly linking search/texture and scaling paradigms 
to data visualizations. However, if the field of visualization is to progress in a 
coherent manner, then it must be based on some sound empirical footing. Research on 
basic human vision seems a good candidate.  

I should also reiterate that in the attempt to draw parallels between Bertin's theory and 
psychophysical data, I have (over)simplified many issues. The perception of images is 
a highly complex process, and it is therefore impossible to consider all the relevant 
factors. For example, I have ignored context effects, such as brightness and color 
contrasts, size constancy and other phenomena, which complicate the straightforward 
theorizing outlined above. The proper conclusion to draw is that vision research can 
be a helpful guide in designing visualizations, but cannot insure optimal 
visualizations. Perception is just too complicated, so usability testing will always be 
required.  

Lastly, construction of a visualization must taken into account the viewer's goals and 
purposes. In choosing variables to represent different data components, for example, it 
is necessary to know what level of perceptual organization needs to be supported. 
This, in turn, depends on the kind of judgments that the user wants to make. Design of 
visualization is partly a knowledge engineering problem.  
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FOOTNOTES  
*Presented in part at Vizualization '91  
1 The word "image" will be used in two senses: 1) the more general sense of an array 
of light and 2) Bertin's sense as the fundamental unit of visualization perception. The 
avoid confusion, the word will appear in italics when referring to Bertin's image.  
2 By texture, Bertin means only marks made from the identical microelements which 
differ in size. Textures made from different microelements are area "implantations" of 
a shape difference. This distinction is not made in vision research terminology. Bertin 
also employs the term "value" instead of the more commonly used "lightness" or 
"brightness."  
3 Bertin, in discussing quantitative data, always gives examples which are ratio 
judgments. It's not clear whether he draws any distinction between interval and ratio 
data. This is an a significant oversight, since interval scales have no true 0 point and 
therefore do not permit direct extraction of ratios. Although the quantitative category 
should probably be subdivided in ratio and interval, I'll ignore this point and follow 
Bertin in assuming that quantitative equals ratio scale.  
4 The sharpness of the attentive/preattentive dichotomy is in some debate, but the 
issues are too involved to cover here. See Green, 1991, for a discussion.  



5 The methodology for obtaining brightness judgments is not relevant here, but is 
described in many books, e. g., Gescheider, 1976.  
6 There is debate on the canonical form of the psychometric function. In some cases, 
the relationship follows Fechner's Law, which predicts a straight line on a linear-log 
plot and says that equal ratios of intensity produce equal intervals of sensation. 
However, choice of psychophysical law does not affect any argument made here.  
7 The insightful reader might note that the log step JND's apparently conflict with the 
power functions described above; logarithmic changes in intensity (the X axis) would 
be linear with arithmetic changes in the sensation/JND (the Y axis). The discrepancy 
can be reconciled by assuming that JND's are themselves logarithmic and follow 
Weber's Law. The alternate is to adopt Fechner's Law, which is a log scale.  
8 Preattentive segmentation based on motion occurs for "short range" motion but not 
"long range" motion. This distinction, however, is beyond the scope of this 
discussion.  
9 The issue of surface perception underlies the concepts of associative and selective 
visualization. See Gibson, 1966 for a discussion of surfaces and perception.  
10 It is true that 3D graphs are commonly used for data visualizations. In order for 
them to allow 4 component images, however, the correspondences among the 
components must be perceived without attentive scrutiny. It is unclear whether this 
actually occurs.  
 


