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Partial Surface and Volume Matching
In Three Dimensions

Gill Barequet and Micha Sharir

Abstract—In this paper we present a new technique for partial surface and volume matching of images in three dimensions. In this
problem we are given two objects in 3-space, each represented as a set of points, and the goal is to find a rigid motion of one object
which makes a sufficiently large portion of its boundary lying sufficiently close to a corresponding portion of the boundary of the
second object. This is an important problem in pattern recognition and in computer vision, with many industrial, medical, and
chemical applications. Our method treats separately the rotation and the translation components of the Euclidean motion that we
seek. The algorithm steps through a sequence of rotations, in a steepest-descent style, and uses a novel technique for scoring the
match for any fixed rotation. Experimental results on various examples, involving data from industrial applications, medical imaging,
and molecular biology, are presented, and show the accurate and robust performance of our algorithm.

Index Terms—Geometric hashing, computer vision, pattern recognition, partial surface matching, protein matching, moiecule

docking.

1 INTRODUCTION

HE problem of finding a full or a partial match between
three-dimensional objects attracted considerable atten-
tion in the literature during the past decade. A main moti-
vation comes from the object recognition problem in com-
puter vision, where an object is viewed by a range sensor,
and the resulting image has to be matched against a library
of model objects. The image may contain several of the
model objects (as well as other objects), and these objects
may be only partially visible because of occlusion and be-
cause the sensor usually cannot scan all sides of the objects.
In addition, the image is likely to be very noisy. The goal is
to find a Euclidean motion of a model object, which makes
it overlap a large portion of some object in the image, lead-
ing to the identification of the model object in the viewed
scene, and to finding its position and orientation there. This
is acknowledged by many researchers as a major problem
in object recognition (e.g., [11, p. 137]). It has important ap-
‘plications for robot task planning, assembly, inspection,
and many additional industrial, military, and other appli-
cations. Another significant motivation for the surface
matching problem is docking of proteins in molecular biol-
ogy, where a geometric fit between parts of the boundaries
of two molecules (i.e., a partial surface matching) is sought,
requiring also that the molecules do not overlap near the
matched boundaries. Important applications of molecule
docking are the recognition and binding of receptors and
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ligands (the reacting sites), and synthetic drug design. Par-
tial volume matching can also aid in the detection of struc-
tural motifs (sequences of amino acids that have similar
spatial structure) in proteins, thus adding to the under-
standing of their role and functionality [2]. Yet another mo-
tivation is the combination of several snapshots of the same
object, taken from different view points, in order to obtain a
description of a bigger portion of its boundary. This has
obvious industrial, civil, and military applications (e.g., the
decoding of aerial photographs in which depth data is as-
sumed to be available), and is closely related to the field of
active vision, which is currently an intensive topic of re-
search [13]. Another important motivation is the registra-
tion of medical images obtained from the same or different
modalities. In many cases, more than one imaging tech-
nique is used in clinical diagnosis, therapy planning, and in
evaluation of therapy. Integrating the complementary in-
formation obtained from several studies of the same patient
can be a valuable tool in the treatment of the patient. Note
that, in most of these applications, we are only seeking a
partial match between the image and the model objects, or
between two protein molecules, or between different views
of the same object. Medical image matching, however, usu-
ally involves a global match (registration) of a whole organ.

Our work was motivated by earlier works on the partial
curve matching technique, first proposed by Kalvin et al. [53]
and by Schwartz and Sharir [75]. This technique, which uses
the so-called geometric hashing method, was originally intro-
duced for curve matching in the plane. In that problem we are
given two curves, such that one is a (slight deformation of a)
proper subcurve of the other, and we wish to find the trans-
lation and rotation of the subcurve that yields the best least-
squares fit to an appropriate portion of the longer curve. The
geometric hashing technique was extended and used in
computer vision for automatic identification of partially ob-
scured objects in two or three dimensions. See [47], [57],
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[61], [62], [63], [84] for various extensions and applications
of the technique. Our algorithm also makes intensive use of
geometric hashing, but in a somewhat different setup.

1.1 Previous Work

We first briefly review the fairly extensive literature on the
problem of surface or volume matching, studied mainly in
the context of computer vision and pattern recognition.
Some works (e.g., [14]) depend on the ability to match sig-
nificant features of the objects, like knobs and holes, whose
existence is not usually guaranteed. Other methods, which
do not rely on the existence of a particular type of features,
are pose-clustering [78], alignment [49], and geometric hashing.
A comparison between these techniques is found in [83].
Comprehensive surveys on partial surface matching tech-
niques in computer vision are found in [11], [23]. Many
other works have addressed the problem, most of which
have various limitations. They either restrict the shape of
the matched objects (e.g., require them to be polyhedra, or
to have large planar portions, or study only planar objects),
or assume that there is no occlusion (so a full matching
between the objects is sought), or handle only restricted
motions, involving fewer than six degrees of freedom. The
methods that do not have these restrictions have other dis-
advantages. For example, some of them are sensitive to sta-
tistical outliers, which have to be removed in a preprocess-
ing step. Other methods might converge to a motion that
yields only a local extremum of their “scoring function,”
etc. We provide here, for the convenience of the reader, a
quick review of these works.

Potmesil [71], [72] describes a heuristic surface matching
algorithm, which searches for the transformation that
maximizes shape similarities in the registration of two ob-
jects, where the candidate transformations are evaluated at
some selected points, e.g., surface control points and points
of maximum curvature. Besl [9], [10] gives some metrics for
measuring matches between curves and surfaces. Fisher
[36] suggests heuristics for obtaining a registration between
two objects by using their two-dimensional boundaries (the
so-called silhouettes). Horn [43] and Brou [18] develop the
extended Gaussian image method, which uses a surface nor-
mal histogram for matching convex (and some restricted
nonconvex) shapes. Fang et al. [29] and Stockman and
Esteva [79] solve a constrained registration problem be-
tween polyhedra, where only two-dimensional translations
and rotations are allowed. They extract some edge- and
point-features, and accumulate a three-dimensional histo-
gram of possible matches, in which clusters are assumed to
indicate possible matches. Faugeras [30] and Faugeras and
Hebert [31] use quaternions for converting the three-
dimensional rotation problem into a -four-dimensional
minimum eigenvalue problem, while the translation is
found by using a standard least-squares technique. Horn
[44] suggests instead to look for the maximum eigenvalue.
(Although we do not use quaternions, we have used a
similar idea for a variant of our approach; see Section 5.)
Alternatively, Golub and van Loan [40] and Arun et al. [5]
use singular value decomposition. The main deficiency of their
method is relying on the existence of significantly large
planar regions in the objects. Szeliski [80] uses a standard

steepest descent heuristic for generating a series of rotations
of one object relative to the other. His goal is to minimize
the sum of weighted differences (along the z-axis only)
between points of the two objects. Taubin [81] approxi-
mates data point sets with algebraic surfaces up to the 10th
degree, with an application to global position estimation
(that is, without occlusion). Kamgar-Parsi et al. [54] present
a “2.5-dimensional” registration method, which is actually
a matching problem in two-space. Besl and McKay [12]
register three-dimensional shapes (of various types) by us-
ing the so-called iterative closest point algorithm. This algo-
rithm iteratively invokes a procedure which finds the closest
member of a point set to another given point. The algorithm
converges very quickly to a local minimum of a mean-square
distance metric, so it is applied from several starting rota-
tions, hoping not to miss the global minimum. Huttenlocher
et al. [48] track moving objects in a series of two-dimensional
raster images by using the minimum Hausdorff distance un-
der translations between two sets of points. They actually
match portions of the two images. Their method assumes
that the orientations of occurrences of the same object in suc-
cessive images differ by only a relatively small amount. This
work thus considers only translations, and explicitly assumes
that the rotation component of the rigid motion of the object
is relatively small. Finally, Lavalee and Szeliski [64] solve the
2D/3D matching problem by performing a least-square
minimization of the “energy” needed to bring the projection
lines of the camera contours tangent to the object. They do
that efficiently by using a precomputed map of signed dis-
tances which are represented by an octree spline.

First attempts to solve the molecule docking problem,
which are based on energy minimization (refs. 1-6 of [55]),
were only partially successful. Geometric approaches
(refs. 7-16 of [55], including [25]) were much more success-
ful, but (at least the earlier ones) were not reliable enough
and suffered from unacceptably long computation time
[55]. Kuniz et al. [60] transform the structures of the ligand
and of the receptor of two proteins into a graph in which
they search for four-cliques. Each detected clique is
mapped into a three-dimensional transformation and
checked for possible penetration of the ligand into the re-
ceptor, in which case it is rejected. Similarly, Kuhl et al. [59]
construct a graph in which they search for the maximum
clique. Although this problem is NP-complete in general,
they claim to obtain a randomized algorithm whose practi-
cal running time is O((nm)z'g), where 1 and m are the num-
bers of atoms in the ligand and the receptor, respectively.
Other geometric methods [51], [55] perform a brute-force
search over all the discretized three-dimensional rotations,
while using a secondary method for identifying the appro-
priate translation. The paper [55] uses a correlation function
(computed efficiently by using the discrete Fourier trans-
form) for determining the translation. Traditional methods
for detecting structural motifs in proteins usually employ
algorithms for string comparison, where the strings repre-
sent the primary structures (amino acid sequences) of the
proteins. A survey of these methods is found in [74]. En-
hanced methods [1], [67], [73] also consider predefined mo-
tifs (such as the so-called orhelixes and B-sheets) in the sec-
ondary structures of the molecules.
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A major contribution to these problems was achieved by
application of techniques based on geometric hashing. This
method facilitates the handling of a priori totally unknown
three-dimensional structures. The main problem in gener-
alizing this technique to partial matching between surfaces
(as opposed to curves) is that, in its original application to
partial curve matching, the'method depends on the linear
order of points along the given curves, which is needed for
computing the relative “shift” between matching portions
of the curves. There are significant technical problems in
naive attempts to extend this technique to (partial) match-
ing between surfaces or volumes. In applications based on
geometric hashing, one proceeds by assigning footprints to
the molecule atoms, then by matching the footprints and by
voting for the relative transformation (rigid motion) of one
molecule relative to the other, assuming that the correct
transformation will receive significantly more votes than all
the others. For the motif detection, Nussinov and Wolfson
[69] define the footprint of each atom as its coordinates in
systems defined by any non-colinear triple of atoms (thus
each atom has O(ng) footprints, where n is the number of
atoms in the molecule). Similar ideas are presented in [33],
[35]. Fischer et al. [34] take a similar approach for the mole-
cule docking problem. In their method, each pair of atoms
defines a basis (whose length is the distance between the
two atoms), and the footprint of every atom is defined as
the distances from the atom to the endpoints of every basis,
coupled with the Jength of the basis (thus each atom has
O(n") footprints). In all cases, the footprints are stored in a
hash table, as in any other application of geometric hashing,
which allows to retrieve entries with some tolerance. Here
this is needed not just because of the noisy footprints, but
also because of the conformational changes that might occur
in the molecule structures during the reaction between them.

Finally, we briefly describe the topic of medical image
matching, which has also attracted a lot of attention in the
medical literature. The problem arises when complemen-
tary information about some organ is obtained by several
imaging techniques, such as CT (Computed Tomography),
MRI (Magnetic Resonance Imaging), and others. The goal is
to match (register) the various models of the same organ
obtained by these methods, in order to obtain a single im-
proved and more accurate model. Such a registration is
needed because the orientations of the organ usually differ
from one model to another. Many methods, which are
similar to the methods for object recognition, were pro-
posed for the solution of this organ registration problem.
These include, among many others, approximated least-
squares fit between a small number of markers [41], [42],
singular value decomposition for matching point pairs [28],
[45], high order polynomials for a least-squares fit [56], [76],
“thin-plate spline” for registering intrinsic landmarks [16]
or extrinsic markers [15], parametric correspondence [22],
[70], chamfer maps [7], [17], [26], [46], [50], partial contour
matching [68], moments and principal axes matching [3],
[37], [38], [58], [82], and correlation functions [6], [20], [24],
[52], [66]. Two comprehensive overviews of image registra-
tion techniques are given by Brown [19] and by van der
Elsen et al. [27].

1.2 Our Approach

We propose a new approach to the matching problem and
present several of its applications in the domains men-
tioned above. Our algorithm accepts any pair of point sets
in 3-space, describing either the volumes or the boundary
surfaces of two objects, and attempts to find the best rota-
tion and translation of one object relative to the other, so
that:

1) if the given sets represent object boundaries, then
there should be a good geometric fit between large
portions of these boundaries; and

2) if the given sets represent object volumes, then there
should be a large fit between the boundaries of the
objects, so that their volumes either overlap or remain
disjoint near the fit.

In the first case, our algorithm solves the (partial) surface
matching problem. In the second case, it solves the (partial)
volume matching problem, either with volume overlap or
with volume complementarity.

Here is a brief sketch of our algorithm:

¢ First, we associate with each point of the two sets a
footprint. This value should be invariant under rota-
tions and translations, and should be “descriptive,” in
the sense that points of the two sets whose local
neighborhoods admit a good match should have
similar footprints, whereas points whose local neigh-
borhoods do not fit well together should have signifi-
cantly differing footprints.

¢ Next, we define a scoring function that measures the
“goodness” of a specific rotation (of one set relative to
the other), and is invariant of the relative translation.
In an ideal setting, this function has a global maxi-
mum at the correct rotation and does not have any
other local maxima. This enables us to advance from
any rotation toward the correct rotation, by invoking
the scoring function iteratively, and by deciding lo-
cally in which direction to advance.

¢ Finally, we compute the best translation associated
with the final rotation. The various applications of our
algorithm mainly differ in the definition and compu-
tation of the footprints. Needless to say, the choice of
footprints is a crucial factor that influences the success
of our method.

Our technique bears some resemblance to previous in-
dexing methods that are based on the density of votes in
some space. The main contribution of our technique is the
new observation that the density of vofes in translation
space can be used for computing the correct relative rota-
tion of a model and an image. Other ingredients of our al-
gorithm are known methods for searching for extremes of
unknown functions, clustering, principal components
analysis, and several other techniques. In comparing our
algorithm to previous works on surface matching, we can
say that our algorithm appears to be robust even in the
presence of considerable noise in the input data (or of excess
data that is irrelevant for the partial match that we seek).
Therefore, we do not need to remove, in a preprocessing step,
data that represent statistical outliers. Our algorithm does
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not depend on any correspondence between the two sets of
input data points. It does not depend on the existence of
any predetermined features of the objects. It does not rely
on surface derivatives. Our algorithm is very easy to im-
plement, and it runs in practical time with practical inputs,
which compares favorably with reported performance of
earlier algorithms. It produced very accurate results in all
the cases that we tested and are reported here. However, as
other indexing methods, our technique can be fooled by
contrived examples (which, however, are unlikely to arise
in practice), or when poor footprint systems are being used.
The generalization of our algorithm to higher dimensions
appears to be straightforward. The only issue preventing
the algorithm from being a fully automated tool for
-matching any two point sets is the need to assign
“descriptive” footprints to all the points. This seems to re-
quire customized treatment for each class of applications,
which may be regarded as a deficiency of our algorithm.
However, it is also an advantage of it: Whereas most of the
previous registration algorithms actually regard the coor-
dinates of each point as its footprint, we achieve greater
versatility of the matching process through the additional
information hidden in any specific system of footprints. We
emphasize again that the choice of footprints does greatly
influence the success of the subsequent matching proce-
dure. As with other indexing methods, our algorithm may
fail with a poor choice of footprints. Our experiments show
that the algorithm breaks down when the number of correct
votes falls below roughly one percent of the total number of
votes (as did occur in the molecular matching examples—
see Section 7). The largest percentage of correct votes that
occurred in our experiments was 16 percent.

In the context of molecular biology, the main differences
between the application of our algorithm to molecule
docking and similar works on this problem based on geo-
metric hashing are the following:

1) We use all the atoms on the molecule boundaries in-
stead of using only “points (atoms) of interest.” (For
example, the technique of [34] uses only the “back-
bone” C-atoms of the polypeptide chain of a protein.)

2) We generate a footprint for each individual atom in
each molecule, and not for pairs or triples of atoms.
Consequently, we have much fewer footprints than
earlier methods do, and thus also much fewer voting
entities.

3) The other methods vote directly for a rotation,
whereas we vote for an imaginary translation at any
fixed rotation. Thus, the other methods have only one
voting Pprocess, whereas we generate a series of rota-
tions and vote at each one of them separately.

Our technique was most successful in the industrial and
medical applications, where the quality of the data allowed
us to generate good footprints, and was more problematic
(though still reasonably successful) in the molecular biol-
ogy applications, where the footprints generated by the
current version of our algorithm are of poorer quality, due
to the nature of the input data. We feel that the difficulties
that we faced with molecule docking were not due to in-
herent limitations of the algorithm, but rather because of

the imprecision in the definition and computation of the
boundary atoms of the molecules and, consequently, the
production of poorer-quality footprints for them. (Needless
to say, these problems also hamper the performance of all
the earlier algorithms mentioned above.)

The paper is organized as follows. In Section 2 we de-
scribe the rationale for the algorithm proposed in the fol-
lowing sections, by examining a two-dimensional variant of
the problem. Section 3 presents an overview of the algo-
rithm. Section 4 describes in detail the various phases of the
algorithm. Section 5 describes an alternative statistical ap-
proach in three dimensions, which reduces the problem, in
favorable situations, to a two-dimensional problem. Sec-
tion 6 analyzes the complexity of the algorithm. Section 7
presents the experimental results mentioned above. We end
in Section 8 with some concluding remarks.

2 RATIONALE: THE Two-DIMENSIONAL CASE

The motivation for our algorithm arose from our experi-
mentation with matching synthetic sets of points in two

dimensions. The input consisted of a point set A in R, and
of another point set B, obtained from A by rotating (by

some angle 8) and translating. The footprints of the points
were chosen in an artificial way that ensured a nearly per-
fect match. Consider the point set A shown in Fig. 1. As
seen in the figure, the points belong to a regular grid. Each
point was assigned a unique footprint. Then, we repeated

the following step for various angles 6. The set A was ro-
tated counter-clockwise about the origin by 6. Denote this

rotation as Ry The new set B was defined as the collection
of all the rotated points, where the coordinates were
rounded to the nearest grid point. (When more than one
such rotated point was rounded to the same grid point,
only one representative point was arbitrarily selected.) Each

point Re(p) was assigned the same footprint as p. Now we
intentionally assumed the wrong assurnption that B was
obtained from A by franslating by some shift (£, t,) instead
of by rotating. Under this assumption we voted for the
relative shift between A and B in the following manner. For

each point p € A we located the point g € B with the same
footprint (if it existed) and voted for the shift § - . Had
our assumption been true, all the votes would have been
given to the same shift (f., £,) (or, because of our coordinate
rounding, to shifts very close to (%, f,)). Since it was false,
the votes were not given to one single cell (shift) but were
spread in the voting table. Fig. 2 shows several voting ta-
bles that correspond to different values of 6. The voting
tables show that the scattering of the votes increases as the
angle of rotation increases, reaching a maximum at 6= 7.
Surprisingly, the distribution of the votes in the voting table
resembles a rotated version of the original set A! This is
easily confirmed when we calculate the shift for which each
point p = (x, y) voted. Let S; denote the scaling of both axes
by f. Then, it is easy to see that, for any point p(x, ),
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Hence, if the rotation of B relative to A is 6, then each point
p votes for the imaginary shift § - p, which is obtained by

, and then by
scaling it by 2sin£. This means that the Votmg table actu-

first rotating p around the origin by 2+

ally shows the shape of the original set rotated by £+ %

and scaled by a factor of 2sin %.

Fig. 1. Synthetic two-dimensional point set.

This suggests the following technique for determining
the goodness of a rotation @ between A and B. We rotate A

by @ and vote for the shift between R (A) and B. The closer

o is to the correct rotation 6, the more “compact” is the re-
sulting voting table. That is, the votes should appear to be
clustered around some “accumulation point.” As shown

above, when the relative rotation between A and B is 0,
each point p € A contributes one vote to the shift

S Q[Rn e(p)]. Apart from round-off errors, the rotation
2si St
2\ 273
R, o does not influence the density of the voting table.
7t7
Thus, the only factor that causes the votes not to be gath-

ered at a single cell of the voting table is the scaling effected

0
by S . Since the sine function sinz is continuous over the

2 smi

space of orientations 6 € [0, 27| and has a unique minimum

{at 0) and a unique maximum (at ), we expect the voting
table to be the most sparse when our “guess” w deviates
from the real 8 by 7, i.e,, when |8~ @| = 7, to be the most

dense when 6 = @, and to vary continuously and monotoni-
cally between these two extremes. This suggests that we use
a scoring function that measures the sparseness of the voting
table, giving higher scores to more compact tables, and then
apply a simple iterative binary search step that varies the
rotation in the direction that makes the table more compact.
A plausible scoring function of this kind is

ST = 3 M

where T is the voting table, n is the number of cells in T,
and M, is the number of votes given to the ith cell. The per-
formance of this scoring function was very good in our ex-
periments in two dimensions, as well as in our experiments
in three dimensions which involved full matching of data
free from noise. It failed, however, in cases of partial
matching, or when the data was noisy. We describe in de-
tail in Section4.2 the improved scoring function that we
actually used in our experimentation.

3 OVERVIEW OF THE ALGORITHM

After presenting the basic idea of the algorithm in an ideal
and artificial two-dimensional setting, we now extend this
idea and develop from it the actual algorithm that we have
used. In a nutshell, the idea is to separate, as above, the ro-
tation and translation components of the desired rigid
transformation, to conduct a search only over the space of
rotations, and to compute a score for each rotation, based
on an attempt to compute the correct translation under the
(usually false) assumption that the current rotation is the
correct one. We are given two sets of points (not necessarily
of equal sizes) representing two respective objects in three-
space, and expected to be spread more or less uniformly on
the boundary of the corresponding objects or in the vol-
umes that they occupy. In the former case we seek a partial
(or full) surface match between the boundaries of the two
objects, whereas in the latter case we seek a volume match,
involving either volume overlap or volume complementar-
ity. Our proposed algorithm consists of the following steps:
1) Data acquisition:

e Read all the input points describing the two ob-
jects. Optionally (in difficult cases), discard points
which do not contribute to the matching (e.g., be-
cause their footprints are “insignificant”).

e Compute a footprint for each input point. Points
that are expected to match (locally) should have
similar footprints, and points that should not be
matched (locally) should have significantly differ-
ent footprints. ‘

e Prepare a generic voting list. That is, construct a list
of pairs of points, one of each object, such that the
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Fig. 2. Voting tables corresponding to a few values of 0.
difference between the footprints of the points in a 3) Advancing toward the rotation with the highest score:

pair does not exceed some tolerance threshold. s Compute the scores of rotations defined by a sparse

2) Scoring a specified rotation R: three-dimensional grid of Euler angles taken at fixed

e Vote for the translation between the objects. For intervals. Initialize the current rotation to the rota-

each pair of points (p, 4) in the generic voting list, tion on this grid that receives the highest score.

apply the rotation R to p and give one vote for e Advancing in large steps: Initialize d to dy. Com-
7 - R(p). ‘ pute the scores of all the rotations (in some prede-

fined grid) that are at some Manhattan distance d
from the current rotation, and find their maximum.
If the maximum score is higher than the score of
the current rotation, reset the current rotation to

o Compute a score for the resulting voting table. This
function' aims to give higher scores to more-
clustered voting tables.
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the one with improved score, reset d to dy, and re-
peat this step. Otherwise, double d and repeat this
step. Halt this step when d exceeds some limit d,,,,,.

¢ Advancing in small steps: Initialize d to d,/2. Com-
pute the scores of all the rotations in a grid of width
d/2 that are at Manhattan distance 4 from the cur-
rent rotation, and find their maximum. If it is higher
than the score of the current rotation, reset the cur-
rent rotation to the one with improved score, double
d (unless it equals dy/2), and repeat this step. Oth-
erwise, divide d by two and repeat this step. Halt
this step when d falls below some limit d,;,.

4) Computing the correct translation:

¢ Find the cell with the maximum number of votes in
the voting table associated with the best rotation,
and declare it to be the correct translation. In diffi-
cult cases, where too much noise causes this simple
approach to fail, invoke a special subroutine that
uses a correlation function to compute the correct
translation.

4 DETAILED DESCRIPTION OF THE ALGORITHM
4.1 Data Acquisition

The actual data consists of two point sets A, B C R’. The
first step computes the footprint of each point, as a certain
scalar or vector function of the points of the same set lying
in some small neighborhood of the point. In practice, dif-
ferent types of input data require different, and in many
cases rather careful, definition and computation of the foot-
prints. The footprint should be invariant under translations
and rotations in three dimensions, and also be sufficiently
“descriptive,” as described above. Intuitively, a good choice
of footprints leads to a small number of false matches, i.e.,
pairs of points, one of each set, which have similar foot-
prints although they should not match. Our experimenta-
tion showed that avoiding false matches is' much more im-
portant (and difficult) than not losing true matches (the
latter problem can result from sporadic mismatches be-
tween footprints of points that are supposed to match). We
denote the footprint of every point p by FP(p). For each

point p € A, we find all the points 4 € B whose footprints
are close enough to that of p, that is, | FP(p) — FP(q) | < ¢ (for

some tolerance parameter ¢). Each such pair (p, q) contrib-
—

utes one vote for the relative translation j — R(p) between

the sets A and B. Clearly, the set {(p, )} of voting pairs is
independent of the rotation R. Therefore, we preprocess
this set in advance. First, we prepare the set FP(B) for range

searching in the footprint space. Then, for each point p € A,
we generate a range-searching query consisting of the ball

of radius € about FP(p), and, for each point g € B found in
this range, we add the pair (p, q) to the set of voting pairs,
denoted as the generic voting list.

4.2 Scoring a Rotation ]
We represent a rotation R of the set A by a triple of Euler
angles (8,, 6,, ) (see [39, p. 608]). That is, every pointp € A

is first rotated by 6, around the x-axis, then rotated by 6,

around the y-axis, and finally rotated by 6, around the z-
axis. (Equivalent definitions are found elsewhere, e.g., in

[11, p.79].) For each rotation R, we scan sequentially the
e

generic voting list, compute the actual value of § — R(p) for
each voting pair (p, q), round its three components to inte-
ger numbers, and give the resulting triple one vote. The

resulting voting table Tr is thus three-dimensional and
contains some number, ng, of nonempty cells. Denote the

number of votes in the ith cell by M;, for i =1, ..., ng. Also,
denote the Euclidean distance between two cells i and j by

Dy, and set the “radius” of every cell to R;=1.0. The first
version of our scoring function is similar to a measure of a
“gravity potential.” It regards each cell of the voting table
as a volume, whose mass is the number of votes given to it.
In order to favor dense voting tables, the score consists of
the sum of the “gravity potentials” between every pair of
distinct cells, plus the “self gravity potential” of each cell.
Specifically, this score is defined as

SCy(T) =

2 (MM /Dij)”fizi(Mf /R))

I<i<j<n,

The score SC; performed better than SC; (see Section 2) in
two and in three dimensions (in the sense that the correct
rotation corresponded to a sharper maximum of the scoring
function in the noiseless cases that we have tested), but still
did not score well the correct solutions in typical cases that
involve noise. We found empirically that we can signifi-

cantly improve the score if we weigh each term of SC; pro-
portionally to the masses that participate in it. That is, we
used the scoring function

SC,(Ty) =
S (M« 00}/ 0,) 3o/ R)

1<i<j<ng i=1

For efficiency of computation, we restricted ourselves to
sufficiently “close” cells of the voting table, i.e., to cells
whose mutual Manhattan distance did not exceed some
threshold 8. In all our experiments we set 8 = 5. The effect
of this compromise on SC, was negligible.

In abstract setting, the problem that we face here is as
follows. We are given a three-dimensional distribution (the
voting table), and we want to detect in it a cluster region,
where the distribution is denser and more concentrated. We
want to give a higher score to distributions with a denser
cluster. As explained in Section 4.3 below, the dense cluster,
when it exists, fully lies in (or, because of noise and of
rounding, near) some plane, a fact that should help us in its
detection. However, we are not aware of any available sta-
tistical tools that can tackle this problem successfully on the
type of data that we have.
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4.3 Finding the Best Transformation

Recall that, in two dimensions, the votes have the simple
representation

Fortunately, a similar situation also occurs in three dimen-
sions. As is well known, every rigid motion in three dimen-
sions can be represented by a single rotation by some angle

6 around some line € in R’ (which passes through the ori-
gin), followed by some translation s. Without loss of gener-

ality, we may define a new coordinate system, in which the
—

Z/-axis is the line €. In this system, voting for R,(p) — 7 is
identical to the two-dimensional case. Indeed, rotating a

point by angle 8 around the z-axis does not change its z-
coordinate, so the z-component of the vote is simply zero.
Hence, the “good” votes in the resulting three-dimensional

voting table fully lie within a plane II, which is perpen-
dicular to the direction € of rotation and passes through s.
The structure of the “good” votes within this plane is es-
sentially identical to the structure of an ideal two-
dimensional voting table of the orthogonal projections of

the given points on IL, which corresponds to the planar ro-

tation by angle 6. For a given rotation R, let ©(R) denote the
angle of rotation effected by R about the rotation axis of R.
If we assume perfect point registration and no noise in our
match (as we assumed in the two-dimensional case), then
the above discussion implies that, with an ideal choice of
the scoring function, we would obtain a maximum score
when the current rotation R is equal to the correct rotation

Ry, and the score would increase monotonically toward that

maximum as the angle G(ROR_l) decreases to zero. In prac-
tice, however, due to imperfect registration of the foot-
prints, the existence of only a partial match, and noise in
the data, even an ideal scoring function might have other
local maxima, but we expect that these maxima are not too
sharp, and that the function resumes its ascent toward the
correct rotation in some small neighborhood of any local
maximum. These expectations were indeed fulfilled in all
our experimentations, when a reasonable (partial) match
did exist between the two objects.

The navigation toward the optimum is a combination of
a steepest descent [77] and a hierarchical pyramid [17] ap-
proaches. It is performed in three main phases. First, we
evaluate the scores of all the rotations (6,, 8,, 8,), where 6,,
8,, and 6, range over all possible multiples of 7/3. It is well
known that (8, 6,, 6,) = (7 + 6, 7 - 6, 7 + 6,). Hence we
need to score only 108 different rotations (instead of 216) in
this phase. We choose the rotation that receives the highest
score in this phase as the starting rotation. In cases when
multiple solutions (maxima) are expected, or when more
than one rotation receives in this step a high score, we re-
peat the following two steps for several starting rotations.
In the second phase we advance in “large” steps. We set
two integer values, dy and d,, (or require them from the

user), which limit the Manhattan distance (in the three-
dimensional space of Euler’s angles) from the current rota-
tion in our search for an improved rotation. Assume that
the current rotation is (8,, 6,, 6,). We initialize d to d, and
compute the score of all the rotations (6, + &, 0, + g, 6, +
&), where g, g, and ¢, are integers, and lg| + le, |+
l'e,| =d. If the highest score of all these rotations is larger
than that of the current rotation, we reset the current rota-
tion to the new one, reset d to d;, and repeat this step. Oth-
erwise, we double the value of d and repeat this step. If the
value of d exceeds d,y,,, then we halt this phase and proceed
to the third phase. In the third phase we advance in “small”
steps. We set a value d,,;, which, as in the previous phase,
limits the Manhattan distance from the current rotation in
our search for improved rotations. The initial rotation is set
to the last one of the previous phase. We initialize d to dy/2,
and compute the score of all the rotations (6, + ¢, 8, + ¢, 6,
+ &), where g, ¢, and ¢, are multiples of d/2, and le,| +
le,| + l& | =d. If the highest score of all these rotations is
larger than that of the current rotation, then we reset the
current rotation to the improved one, double 4 (unless it
equals dy/2), and repeat this step. Otherwise, we divide d
by two and repeat this step. If the value of 4 falls below
dmin, then we terminate this part of the algorithm and out-
put the current rotation.

4.4 Determining the Correct Translation

In most cases it is very simple to infer the correct translation
from the voting table of the best rotation. It is simply the
cell that receives the highest number of votes. It can be re-
garded as the “center” of the cluster representing the cor-
rect translation. This choice of translation was confirmed by
most of our experiments. However, this assumption turned
out to be false for voting tables that contained too much
noise (due to false votes, noisy data, and/or only partial
matches) and were too sparse (due to inaccurate choice of
footprints and/or a tolerance parameter). Such a situation
arose in our experimentation with molecule docking (see
Section 7). It is interesting that in these bad cases the voting
tables were descriptive enough for yielding the correct ro-
tation, but too noisy to point directly at the correct transla-
tion. Our explanation of this phenomenon is that in each
voting table the correct votes were too few to be recog-
nized; however, when we advanced from one rotation to a
more accurate rotation, the few correct votes approached
each other so as to give a higher score to the table that cor-
responded to the latter rotation. In such problematic cases
we use a correlation function, such as the function de-
scribed in [55]. In this simple approach we rely on the abil-
ity to distinguish between the boundary of the object and
the internal portion of it. We define for the first point set A
a characteristic function of the xyz-grid points: fa(x, y, z) is
set to one for points on the boundary of the object, to ¢4 for
points inside the object, and to zero for points outsidke the
object. We define a similar characteristic function f3 for the
point set B, using another constant cg. The constant c, (resp.
cp) is chosen to be a large negative (resp. small positive)
number. Then, we evaluate for each translation ¢t = (¢,, tyr t,)
(in a predefined range of translations) the correlation
function defined by CORp(ty, t,, 1) = 2y 2y 2, (falx, v, 2) -
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folx + t, y + t, z + ), and search for the translation t*
which maximizes this correlation. This t* is output as the
correct translation.

5 AN ALTERNATIVE STATISTICAL APPROACH

In this section, we describe a statistical approach, which is
capable of reducing the three-dimensional matching prob-
lem into a two-dimensional problem. We note in advance
that, so far in our experimentation, this method succeeded
only in a favorable situation, where we had a very good
footprint system, in which the amount of false votes in the
voting tables was sufficiently small. However, when this
technique applies, it improves the running time of the algo-
rithm considerably, because it constrains significantly the
search for the best rotation.

Let X denote a three-dimensional random variable, and
let X denote the covariance matrix of X; that is,

2= (g(xik - _X_Z.J(Xjk - Z)J/(N ~1)

fori,j =1, 2,3, where N is the number of samples of X, X;

is the ith component of the kth sample of X, and X, is the
average of the random variable X; obtained by projecting X
onto the ith axis. Let v;, v;, and v; be the characteristic vec-
tors of %, with corresponding characteristic values 4, > 4, >

A3 2 0. The vectors v; are known as the principal components
of X. They have the property that the projection of X onto

the line containing v; gives a one-dimensional variable with

the largest variance. The direction v, yields the maximum
variance for the projection of X in any direction orthogonal

to vy, and v, yields the maximum variance for the projection

of X in any direction orthogonal to both v, and v, See
[4, §11] for more details concerning principal components.
Consider the result of scoring some fixed rotation, say
(0, 0, 0). As explained in Section 4.3, all the “good” votes are
spread in a plane IT, which is perpendicular to the axis of
rotation ¢ (about which the second point set was rotated
relative the first set). If there are significantly many “good”
votes, we can perform a principal components analysis on
the resulting voting table and find the plane II. In a perfect
situation, when all the votes are indeed spread in a plane I,
the variance of the voting table in the direction of the line £
orthogonal to IT is zero. Hence, in this case the two most
significant principal components span the plane I1, and the
least significant component (with characteristic value zero)
gives the direction of €. In more realistic noisy situations,
where the amount of noise present in the voting table is not
too large, this method still gives a good approximation to
the direction of £. Next, given £, we generate a transforma-
tion matrix T for which the image of € is the z-axis. If we
apply T to the original data and use these transformed values
in subsequent voting steps, we obtain voting tables where
(most of) the votes lie in some horizontal plane. We can thus
reduce the problem to a two-dimensional problem by pro-
jecting the data onto the xy-plane. We can now compute the

desired rotation angle 6 (about €) by the simple method
described in Section 2. The rotation in our original three-
dimensional problem is thus T_lReT, where Ry is the two-
dimensional rotation about the origin by 6. We thus obtain
the rotation component of the solution. (Note that the rota-
tion is represented by a rotation matrix and not by Euler
angles.) We can now find the translation component of the
solution by applying a single voting step (of our method) to
the correct rotation, and by looking for the cell that received
the largest amount of votes.

This technique resembles the approaches taken in [3],
[31], [44], [58], [82]. The major difference in our approach is
that we use this technique only for reducing the dimen-
sionality of the problem by applying it to our voting table,
while the works cited above usually attempted to compute
directly the correct rotation by aligning the principal axes of
inertia (equality of the second order moments) of the origi-
nal data. This latter approach is more ambitious, and can
succeed, as noted in the introduction (Section 1), only when
the amount of statistical outliers is negligible. The major
disadvantage of this approach is that it requires a very
good footprint system, or, alternatively, a preprocessing
step that removes noise from the input data or from the
initial voting table. Such a good footprint system, in which
the number of “bad” votes is negligible, is not always prac-
tical (or possible) to design. Moreover, we do not have a
good method for removing noise from the voting table; this
lies at the heart of the whole problem—the availability of
such a cleaning step would have made surface matching a
much simpler task. Thus, in favorable situations, in which
the “good” votes dominate the “bad” votes, the principal
components technique works well and yields a much faster
algorithm, in which £ is found in a single step, followed
by a one-dimensional search for the rotation angle about
{, thereby eliminating the more expensive search in the
three-dimensional space of rotations. In practice, how-
ever, the voting tables are so noisy, that this computation
of € cannot be performed successfully on any single vot-
ing table. The next section describes one successful appli-
cation of this technique.

Note that this mechanism works only when the relative
rotation between the two point sets is “far” from the rota-
tion for which the voting table is constructed. Otherwise
the variances of the two major principal components de-
crease, and they may be indistinguishable from the small
variance along €. In this case all the “good” votes are ac-
cumulated around some point, which is the correct shift.
Since we do not know in advance how close the correct
rotation to an initial rotation is, we can simply apply this
technique to several rotated versions of the first point set,
which are relatively far from each other. Most of these
rotations will be far from the correct rotation, so we can
eliminate the rotations with the smallest overall variance
and average the results of all the others, thereby obtaining
even more robust determination of €. It is also possible to
combine the statistical method with the iterative method.
This is performed by applying the third phase of our
standard advancing mechanism (see Section 4.3) after ap-
plying the mechanism presented here. This way we com-
bine a fast computation of an approximate solution (by
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using the statistical approach), with a more precise
mechanism for reaching closer to the correct solution (by
using our regular advancing method). Another possible
combination is to replace the first phase of our standard
method (the scoring of a grid of rotations) by the statisti-
cal method. However, in the one successful application of
the statistical technique, the result was accurate enough
and did not require further improvement. The statistical
approach saved in this case more than 90 percent of the
running time.

6 COMPLEXITY ANALYSIS

We measure the time complexity of the algorithm as a
function of n, the cardinality of the input sets (assuming
the two input sets have comparable sizes), k, the size of
the generic voting list, and s, the maximum size of the
object in any direction, which is proportional to, and is
measured in terms of the maximum size of any dimension
of the voting table. Computing the footprints takes O(n)
time. Preparing the generic voting list, if it uses a hash
table, can be executed with expected O(k) running time.
This expected running time is due to the nature of hash-
ing, and does not assume anything about the input point
sets of the algorithm. A reasonable choice of the footprint
system and of the tolerance parameter & which yields on
average only a constant number of points of the second
set for each range-searching query made for a point of the
first set, makes k comparable with n. Improper choice of
the footprmts and/or of g say a too large & might result
in G)(n ) access operations to the hash table, which might
make k also ©(n") in the worst case. (We could also
achieve an O(nlog'n + k) deterministic running time by
using fractional cascading [21].) Each scoring step consists
of two substeps:

e Creating the actual voting table, which takes O(k)
time; and

e Scoring the voting table, which takes O(s3) time (since
for each cell of the table we consider only a constant
number of neighboring cells).

The number of scoring operations is proportional to 1/d ;..
(With our setting of the tuning parameters, the maximum
value of this term was a few thousands.) In total, the run-
ning time of the whole algorithm, with an approprlate
tuning of its parameters, is O(n + k + (k + s g/ dpin)- The
space complexity of the algorithm is O (n + k + 7).

7 EXPERIMENTAL RESULTS

We have implemented the whole algorithm in C on a
Digital DECstation 5000/240, on a Sun SparcStation II,
and on SGI Indigo and Indy workstations. The imple-
mentation, performed by the first author, took about two
man months, and the software consists of about 2,000
lines of code.' We have experimented with the algorithm
on several data files obtained from different sources of

1. The software is publicly available and can be obtained upon request
from the first author.

input, each input consisting of 300-1,200 points, and ob-
tained very good results in practically all cases. We de-
veloped specific methods for computing “meaningful”
footprints for each type of input, as described below.
Also, for each type of input we found (empirically) a tol-
erance parameter for preparing the generic voting list.
The tuning of the parameters that controlled the ad-
vancing phases (limits of rotation distances) was very
robust, and a single set of values performed well in all
cases. We used dy=4.0 (resp. dp. = 16.0) as the lower
(resp. upper) limit for advancing in large steps, and
dg/2 =2.0 (resp. dp, = 0.125) as the upper (resp. lower)
limit for advancing in small steps. All the angles are
specified in degrees.

In the first example, we sought a full volume match
between two versions of a CAD object. Fig. 3a shows the
so-called Geneva mechanism [8, pp. 679-680]. This object
was rotated by the Euler angles (15.7, 115.2, 200.1), as
shown in Fig. 3b. Then, the two objects were approxi-
mated by rather large voxels, as shown in Fig. 3¢ and
Fig. 3d, respectively. The size of each voxel was set to
one, and the point sets representing the two objects were
defined to consist of the center of each voxel. The foot-
prints chosen for this example count the “amount of
material” around each voxel: It is the number of voxels
belonging to the object within the 5 x 5 x 5 cube centered
at the given voxel. The tolerance parameter for the vot-
ing mechanism (maximum tolerated difference between
footprints) was set to one. The algorithm found the rota-
tion within error of less than 0.8 degrees at each compo-
nent. The algorithm also found the correct translation.
Fig. 3e shows an overlay of the two objects, where the
first one is rotated and translated according to the com-
puted transformation. See also Table1 for more per-
formance details.

In the next example, we looked for a partial surface
match between two high-resolution depth-sensing scans
of a car from two view points, obtained by a commercial
digitizer. Figs. 4a and 4b show two “clouds” of points,
which contain 119,290 and 179,216 points, respectively.
Because of the nature of the scanning, the two sets of
points describe xy-monotone surfaces (each relative to a
different coordinate frame). Fig. 4a (resp. 4b) shows a scan
of the left side (resp. front half) of the car, as seen from
behind (resp. the front of) the car. We chose one repre-

sentative point out of every 10 x 10 square of points in the
respective xy-grids: the average of the coordinates of the
points. Thus, the size of the data that we considered was
only 47 of the original data. Figs. 4c and 4d show the two
new images from the same view point. The footprints
chosen for this example aim to encode the “pyramid” of
material emanating from each vertex p; ; of the new grid
of data points, and is given by the average of four spatial

angles around p; 1
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TABLE 1
PERFORMANCE OF THE MATCHING ALGORITHM
Matching Tolerance | Voting
Case Figure Type 1Al 18 Footprint Parameter Pairs
Geneva 3 Volume 553 552 # of voxels in a 5-box 1 16,721
Car 4 Surface 1,1851 1,7281 Surface curvature 1 13,609
Aircraft 6 Surface | 1,336 1157 Spatial angles 0 6,438
CAD model 8 Surface 440 (same) Spatial angles 0 6,636
Molecules 9 Voume | 1,112° 1,166° | #of occupied A -cells 4 6,242
(2HHB) ina9x9x9box
Phantom 11 Surface 277 272 # of occupied 1 4,236
Surface 277 295 cellsina 1 4,432
Surface 272 295 5 x5 x 5 box 1 4,476
Correct Correct
Case Rotation Translation
Geneva (15.7, 115.2, 200.1) (3, 11, 20)
Car Unknown Unknown
Aircraft (0.0, 0.0, 0.0) Unknown
CAD model (180.0, 0.0, 0.0) (0,0,0)
Molecules (2HHB) Unknown Unknown
Phantom (1 & 2) (0.0,0.0, 0.0) {0,0,0)
Phantom (1 & 3) (-8.0, 0.0, 0.0) ~(0,0,0)
Phantom (2 & 3) (-8.0, 0.0, 0.0) ~(0, 0, 0)
Computed Rotation Computed
Case Phase Il Phase Il Translation(s)
Geneva (16.0, 116.0, 200.0) (16.0, 115.625, 200.875) (3, 11, 20)
Car’ (6.0, 4.0, 182.0) (6.000, 4.875, 180.875) (16, 41, 0)
Aircraft™ ® (0.0,0.0,0.0) (-15,-1.0, 0.25) (0,32, 0), (0, 40, 0), (45,
36, 8), (45, 36, -8)
CAD model"® (180.0, 0.0, 0.0) (180.0, 0.0, 0.0) (0, 0, 0)
Molecules (2HHB) (0.0, 180.0, 180.0) (-0.125, 181.0, 181.375) (1,-2,2)
Phantom (1 & 2) ° (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0,0, 0)
Phantom (1 & 3) 5 (-8.0, 0.0, 0.0) (-8.25, -0.25, 0.0) (0,-1,2)
Phantom (2 & 3) ° (-8.0, 0.0, 0.0) (-8.00, 1.5, 1.0) (0,-1,2)
# of Scoring Operations Time (Sec.)
Case | ] [ Total | Il HI Total | PerS.O.
Geneva 108 288 270 666 57 146 137 340 0.51
Car 108 108 162 378 56 53 79 188 0.50
Aircraft 108 36 198 342 89 24 132 245 0.72
CAD model 108 36 72 216 37 12 24 73 0.34
Mol. (2HHB) 108 72 288 468 87 58 233 378 0.81
Pha. (1 & 2) 108 36 54 198 61 20 27 108 0.55
Pha. (1&3) 108 72 126 306 60 36 73 169 0.55
Pha. (2 & 3) 108 72 108 288 56 41 64 161 0.55

1
2433 and 605, respectively, after omitting “flat” points.
3514 and 497, respectively, after omitting “flat” points.

473 and 480, respectively, after eliminating “inner” points.

4 :
In this experiment d,,;,, was set to 0.25.

In these experiments d,,,, was set to 8.0.
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Fig. 3. A full volume matching of CAD data.
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This footprint approximates the surface curvature at each
point, which fits our goal here: surface rather than volume
matching. It distinguishes well between peaks in the sur-
face and flat areas, and is, of course, invariant under rigid
motions. It turned out to be so robust, that the tolerance
parameter for the voting mechanism was-set to only 1.0.
First attempts to find the correct rotation indicated that too
many false matches between points at nearly flat regions of
the surfaces contributed false votes to the voting tables. To
fix this, we have excluded from the generic voting list all
the points having footprints in the range 170°-190°. This
improved the matching, and also reduced significantly the
running time, due to data reduction. The algorithm found
the rotation (6, 4.9, 180.9) and the shift (16, 41, 0). Figs. 4e,
4f, and 4g show isometric, top, and side views, respectively,
of the first scan imposed on the second after applying this
transformation. The three figures show that the two sur-
faces match quite closely in their overlapping portions.
Fig. 5 shows typical distributions of votes in the voting tables.

Fig. 5a shows the voting table that corresponds to the zero
rotation, whereas Fig. 5b shows the voting table that corre-
sponds to the rotation which the algorithm found to be cor-
rect. Every cell in the voting table is represented in the fig-
ures by a small ball whose radius is proportional to the
number of votes in that cell. The distribution of the “bad”
votes (the “cloud” of votes) in Figs. 5a and 5b is not uni-
form, and is, in a certain sense, a “biased” version of the
Minkowski difference between the two images, after ap-
plying the rotation to the first image, where points in one
image are subtracted from all points in the other image
with similar footprints. The accumulation point of the
“good” votes, which reflects the correct translation, is
clearly visible in Fig.5b. In “astrophysical” terms, this
cluster is a “black hole,” representing about 16 percent of
the votes.)

In the next example, we looked again for a partial surface
match between two halves of a model of an aircraft. Figs. 6a
and 6b show the full aircraft in a wire-frame and ir’ a shaded
display, respectively. Figs. 6c and 6d show, respectively, the
right and left halves of the aircraft, as seen from the front of
the aircraft. The data consisted of two polyhedral surfaces
containing 1,336 and 1,157 vertices, which we chose as the
representative points. The footprints chosen for this example
aim again to encode the curvature of the surface. This time
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Bl
] :

(9
Fig. 4. A partial surface matching of digitized objects.

we averaged for each vertex the dihedral angles between all
pairs of neighboring facets incident to the vertex. We
weighed each dihedral angle proportionally to the length of
the edge common to the two facets. This footprint is again, of
course, invariant under rigid motions. As with the previous

(a) Zero rotation

(b) Correct rotation

Fig. 5. Three-dimensional voting tables of the car.

example, we have excluded from the generic voting list all
the points having footprints in the range 170°~190°. The algo-
rithm found the rotation (-1.5, -1, 0.25), which received an
overwhelmingly large score. The corresponding voting table
contained four huge clusters, whose center cells received 93,
93, 76, and 73 votes, respectively. (The next “popular” cell
received only 15 votes.) These cells corresponded to the
translations (0, 32, 0), (0, 40, 0), (45, 36, 8), and (—45, 36, —8).
Figs. 6¢, 6f, 6g, and 6h show the first half of the aircraft im-
posed on the second half after applying these translations. It
is seen clearly in all the four figures that two engines, one of
each half of the aircraft, were matched almost perfectly. Fig. 7
shows the voting table that corresponds to the found rota-
tion. The four accumulation points and their corresponding
disks of votes are clearly visible in the figure.

Next we looked for the axis of symmetry of the CAD
object shown in Figs.8a and 8b (a wire-frame and a
shaded display, respectively). We applied the same pro-
cedure as for the aircraft example in order to choose the
representative points and their footprints. As expected,
the initial phase gave the highest score to the zero rotation
and translation, so we passed to the advancing phases the
rotation that received the second highest score. The algo-
rithm found the relative rotation (180, 0, 0) (between the
object and itself) with the respective translation (0, 0, 0).
This solution means that the object has a m-symmetry
about the x-axis.

The next several examples are from molecular biology.
The first two of them consist of the same input. The data
describes two subunits (chains) of human deoxyhemoglobin
(a protein found inside red cells of the human blood), having

the well-known o-f dimer [32]. This dimer is reflected by a
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Fig. 9. Full volume and partial surface matching of hemoglobin subunits.

given so that the correct solution that reflects the contact

between the & and the f chains should have been the zero
rotation and translation. The algorithm found the best rota-

tion to be (-0.25, 0, 0). The simple technique for finding the
final translation failed, since the voting table of the correct
rotation was still too sparse, and no distinguished accu-
mulation point could be identified. We feel that this hap-
‘pened since we did not compute accurately enough the
boundary surfaces of the molecule subunits, and because
the chosen footprints were not descriptive enough. We be-
lieve, however, that the tolerance parameter for the voting
mechanism was accurate. Given the correct rotation, we
applied a simple correlation function similar to that de-

scribed in [55] and in Section 4.4. We set ¢, = —15 and ¢z = 2.
The program checked a 5A-grid of translations in the range

of =30A to 30A in each direction, and found the correct

translation to be (-2, 0, 1).
In order to verify the docking, we computed the inter-

section of the two molecules with a series of parallel planes.
Figs.9b and 9c show the intersections with the plane
X =147 (at the original world coordinates). The matching
area is seen between the upper right side of Fig. 9b and the
lower left side of Fig.9c. These figures repeat the results
presented at [55]. Next, we looked for a volume match be-
tween these two subunits of hemoglobin. The shapes of the
two chains resembled each other, and indeed, the algorithm
found a rotation and a translation, which made them al-
most fully overlap. Figs. 9d and 9e show the two subunits,
side by side, after applying the rotation. The two subunits
are shown in Figs. 9f and 9g and in Figs. 9h and 9i in the
same orientation but from different view points. These
overlaps reveal structural motifs which are common to the

two chains. Indeed, the o and the § chains are very similar
to each other in their tertiary structure, which consists of
similar lengths of an a-helix with bends of about the same
angles and directions [65, p. 145].

We applied the same procedure in order to identify a
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TABLE 2
PERFORMANCE OF THE MATCHING ALGORITHM ON MOLECULE DOCKING
Tolerance Voting
Case Figure (Al |8l Parameter Pairs
2HHB 9 1112 | 1166 30 560
SMHB 10 1118° | 1178 30 357
4MBN 44> 1,339 20 823
# of Initial Computed Rotation Computed
Case Starting Points Phase [I Phase IlI Translation
2HHB 1 (0.0, 0.0, 0.0) (-0.25, 0.0, 0.0) (—2,0,1)4
2MHB 5 (2.0, 0.0, 2.0) (1.875, 0.0, 0.0 (1,0, —1)4
4MBN 2 (-2.0, 0.0, —2.0) (-1.688, 0.562, ~1.75) (-3, -1, 4)
# of Scoring Operations Time (Sec.)
Case ] 1] [l Total | 1 i Total | Per S.0.
2HHB 108 54 126 288 80 40 94 214 0.74
2MHB 108 162 450 720 73 112 310 495 0.68
4MBN 108 162 324 594 88 134 273 495 0.83

B W N =

473 and 480, respectively, after eliminating “inner” points.
479 and 498, respectively, after eliminating “inner” points.
35 and 553, respectively, after eliminating “inner” points.

Translation computed by the correlation technique; its timing is not included here.

similar o~ dimer of two subunits of horse methemoglobin
(PDB code 2MHB). Here the areas of the matching bound-
ary portions were smaller than those in the 2HHB case.
Since the initial phase (scoring a coarse grid of points in the
space of rotations) gave high scores to several rotatfions,
we passed to the advancing phases the five rotations that
received the highest scores. The algorithm identified two
significant maxima of the scoring function: the rotations
(-1.688, 5.312, 174) and (1.875, 0, 0). The latter rotation rep-
resents the contact between the o and the 3 chains. The cor-
relation function, in its setting for the 2HHB case, did not
score high enough the correct translation for the contact.
We modified the cell-to-cell contribution to be three in case
the two cells were on the subunit boundaries, —6 in case one
cell was on the boundary of one subunit and the other cell
was internal to the second subunit, and —10 in case the two
cells were internal to the subunits. These values were found
empirically. This version of the correlation function found
the correct translation within a very small error. Fig. 10
shows the docking of the two methemoglobin subunits in
the contact between them. We have also attempted to dock
a receptor (myoglobin) with a ligand (heme). For this pur-
pose we used myoglobin from a sperm whale (PDB code

Fig. 10. Docking of horse methemoglobin subunits.

4MBN). See Table 2 for the full details.

Finally, we applied our algorithm to the problem of reg-
istration of medical images.  We compared three bit-
volumes obtained by scanning a functional brain phantom
with an MRI scanner. The first two scans differed in their
resolutions: the distance between consecutive slices in the
first scan was 6 mm, whereas it was only 3 mm in the sec-
ond scan. The phantom had the same orientation in the first
two scans. The resolution of the third scan was as high as
the second, but the phantom was rotated by -8 degrees
around the x-axis, relative to the first two scans.

The data obtained by the scanner were three bit-
volumes, where the dimensions of each voxel were 0.86 x
0.86 x 0.86 mm’. We faced a data-explosion problem in this
experiment, too. The original bit-voluimes contained 35,457,
35,898, and 36,111 points. We used only those points whose
coordinates in the xyz-grid were integer multiples of five.
Thus, the size of the data that we considered was reduced
by a factor of roughly 125. Figs. 11a and 11b show the first
and the third scans of the phantom from a side view point.
(The second scan looks much the same as the first one.) As
for the Geneva experiment, the footprints chosen for this
example count the “amount of material”-around each voxel.
We considered only boundary voxels of the two-
dimensional MRI scans (obtained by standard gray-level
thresholding), and the footprint of a voxel was set to the
number of voxels belonging to the phantom within the 5 x 5
x 5 cube centered at the given voxel.

The tolerance parameter for the voting mechanism was set
to one. We experimented with the three possible registrations

2. A functional phantom is a piece of material (perspex, in our case), in
which the shape of the organ is engraved. In order to simulate the scanning
of the organ in different imaging modalities, special types-of liquid (each
modality with its own appropriate liquid) fill the engraved shape of the
organ. Every imaging modality can be tuned to be sensitive to the corre-
sponding special liquid, and almost insensitive at all to the phantom itself.
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(a)

(b)

Fig. 11. Surface matching of a functional brain phantom. (a) Original. (b) Tilted by -8 degrees.

of pairs of scans (out of the three). The algorithm found the
correct rotation and translation in all the three experiments
with practically no error at all.

Table 1 summarizes the performance of our imple-
mentation on all the examples described above, except for
the molecule docking. The latter experiments are summa-
rized in Table 2. In all the docking experiments we sought
a surface matching, the footprint was the same as for the
volume matching of the molecules (see Table 1), and the
correct rotation and translation were the identity. All the
time measurements in Tables 1 and 2 were taken on an
SGI Indigo workstation. Our experimental results show
that the time needed for a table-scoring operation de-
pended primarily on the number of voting pairs and on
the average density of the voting tables, which depends
more on the particular matching instance and less on the
specific rotation. This was reflected well in the molecule
docking experiments, in which a scoring operation usu-
ally required more time than in the other experiments,
due to the larger sparseness of the voting tables in this
case. The total running time for a specific instance de-
pended roughly linearly on the number of scoring opera-
tions, since the difference (in running time) between dif-
ferent scoring operations for the same data was not sig-
nificant. Typically, the third phase of the algorithm re-
quired significantly more time than the second phase
(except for the Geneva case). In practice, however, the
third phase could be omitted, because the results of the
second phase were already reasonably accurate. Each of
our experiments took a few minutes to run. However, we
can trade time for accuracy, by reducing the tolerance pa-

rameter (thereby reducing the number of voting pairs), by
reducing the resolution of the xyz-grid (thereby making
the voting tables denser), and/or by reducing the resolu-
tion of the search in the three-dimensional space of rota-
tions (thereby reducing the number of scoring operations).
We have also implemented the statistical method de-
scribed in Section 5 and applied it to the matching of the
snapshots of the car. The principal components analysis
revealed the characteristic values 170.54, 24.53, and 8.40,
with the corresponding characteristic vectors (0.012, 0.999,
~0.045), (0.994, —0.008, 0.105), and (~0.105, 0.046, 0.993), re-
spectively. The third characteristic vector was thus in the-
direction of the axis of rotation €. We then projected the two
data sets on a plane orthogonal to ¢, and computed the
relative rotation between the projected sets according to the
method described in Section5 (the resulting angle was
179.0125). Putting everything together, we got that the ro-
tational component of the correct transformation was

-0978 -0.024 -0.207
0.010 -0997 0.071
-0.208 0.067 0976

(All the computations were performed in a much higher
precision than the one shown here.) This compares to the
rotation matrix

-0.99% 0.006 -0.086
-0.015 -0995 0.103
-0.085 0104 0991

that we got with the regular method. We did not need to
further advance from this rotation to better rotations. The
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running time on an SGI Indigo workstation was the fol-
lowing: the principal components analysis required two
seconds, projecting the data onto a two-dimensional prob-
lem was negligible, solving the two-dimensional problem
required 16 seconds, and obtaining the final rotational
component of the solution was again negligible. In total, the
statistical approach required 18 seconds in this case, com-
pared with 188 seconds for the regular method. We did not
achieve adequate results with the statistical method in any
other experiment.

8 CONCLUSION

We have proposed in this paper an algorithm for solving
the practical problem of partial surface or volume matching
between two objects in three-space. This problem is a basic
and important problem in pattern recognition and com-
puter vision, with many industrial, chemical, and medical
applications. We have treated separately the rotation and
the translation components of the relative rigid motion
between the two objects. We developed a two-step tech-
nique (voting followed by scoring the vote) for measuring
the goodness of a given rotation, then used this technique
as a subroutine called by an iterative process that advances
toward the best rotation. Finally, we computed the best
translation between the objects, corresponding to the best
rotation. We used footprints which counted the “amount of
material” for volume matching, and footprints that ap-
proximate the surface curvature for surface matching.
However, any other “descriptive” footprint system might
serve as well. As demonstrated, our technique found accu-
rately the matches between several pairs of objects, taken
from several totally different domains. A manual inspection
of the resulting voting tables shows that they are fairly
noisy. The typical table looks like a cloud of randomly and
sparsely (though generally not uniformly) spread points,
containing a small slightly denser region where the good
votes are clustered: One of the open problems that we pose
for future research is to develop alternative theoretically-
sound and practically-efficient methods for identifying
such clusters of data in otherwise randomly spread data.
There are several research directions that we plan to
pursue and to explore further. We plan to continue the ex-
perimentation with our algorithm, to test its performance
limits and see if there are data instances on which the algo-
rithm needs further fine-tuning. We also plan to explore
several enhancements and improvements of the algorithm.
These include the design of better footprints (especially in
the molecular biology domain), experimentation with other
scoring functions, further study of statistical approaches,
design of better searching mechanisms, etc. In a companion
work, we. are presently investigating the use of directed
footprints, e.g., footprints which include the normals to the
surface. This component is not invariant under rotation, but
may have a significant role in the quality of the footprint
system. We plan to improve the implementation of the
voting parameters in the molecule docking problem. Spe-
. cifically, we plan to improve the determination of the atoms
on the boundaries of the molecules, and to try to compute
better footprints for them. Moreover, we plan to enhance

the footprints, so that they reflect not only the geometries of
the molecules, but also chemical properties of the atoms,
such as their bases, electrical potentials, possible bondings,
etc., which also play a significant role in the chemical reac-
tion between molecules.
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