1328

[EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 9, SEPTEMBER 1994

On Geometric Hashing and the
Generalized Hough Transform

Yaron C. Hecker and Ruud M. Bolle, Senior Member, IEEE

Abstract— The generalized Hough transform and geometric
hashing are two contemporary paradigms for model-based object
recognition. Both schemes simultaneously find instances of objects
in a scene and determine the location and orientation of these
instances. The methods encode the models for the objects in
a similar fashion and object recognition is achieved by image
features “voting” for object models. For both schemes, the object
recognition time is largely independent of the number of objects
that are encoded in the object-model database.

This paper puts the two schemes in perspective and examines
differences and similarities. We also study the object represen-
tation techniques and discuss how the object representations are
used for object recognition and position estimation.)

I. INTRODUCTION

NE objective of scene analysis is to identify and estimate

the position of objects in the world given some form
of radiation-based measurements. This can be visible-light
intensity images or depth data acquired with laser light. Of
course, the objects in the scene may be occluded to some
degree. The object models can be geometrically defined,
for example, with points, circles, cylinders, etcetera. (Three
comprehensive surveys of research papers focusing on this
aspect of scene analysis are presented in [1], 121, and [3].) One
set of techniques included in the class of so-called model-based
approaches, applies to situations where the objects to be iden-
tified, are available a priori for rather precise measurements,
before recognition is attempted. One can preprocess these
measurements to develop representations that support a fast
recognition process. Note that representation and recognition
are very much tied together.

Recognition, the process in which every scene object is
identified, is difficult partly because of the viewpoint corre-
spondence problem: the model object can be measured with
the camera located in one position, while an instance of the
same model, that warrants identification, is typically viewed
by a camera positioned somewhere else; or it could be that the
camera is stationary but models have moved. In either case,
the measurements will be distorted by the relative movements.
But, many of these distortions are well approximated with
simple, usually linear, transformations and we can fix reference
frames to the two measurements, and describe the apparent
distortions in terms of reference frame transformations, such

Manuscript received May 4, 1991; revised January 12, 1993 and October
25, 1993.

Y. C. Hecker is with the Courant Institute of Mathematical Sciences, New
York University, 251 Mercer Street, New York City, NY 10012 USA.

R. Bolle is with the Exploratory Computer Vision Group, IBM Thomas J.

Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 USA.
IEEE Log Number 9403007.

as similarity or affine transformations. In this framework, the
goal of an object recognition system is two fold: identify
those models that have instances in the scene and compute the
coordinate transformation that maps each such model onto its
scene instance. These transformations identify the locations of
the objects in the scene.

The set of algorithms commonly called geometric hashing,
summarized in Lamdan’s Ph.D. thesis [4], and in articles
[5]-[11}, exhibit an interesting approach to speeding up the
above mentioned goals of model-based recognition. These
algorithms precompute mostly invariant geometric relations
of the models and store these relations in a look up table to be
accessed during recognition. In this paper, we shed new light
on geometric hashing by giving it a new and unconventional
formulation, typically used to describe the generalized Hough
transform.

The generalized Hough transform (see the original descrip-
tion by Ballard [12], [13] and extensions in [14]) is motivated
by the standard Hough transform and formulated so that arbi-
trary shapes can be detected. The standard Hough transform is
used to detect parameterized geometric objects such as lines
[15]-[17], or circles [18] (see [19] for a review of the Hough
transform); the arbitrary shapes that the generalized Hough
transform detects may not easily be parameterized. Like geo-
metric hashing, the generalized Hough transform precomputes
geometric relations in the models and stores these relations in
a look up table. By using the easily accessible information
in these tables at recognition time, candidate models and
transformations are hypothesized. First the generalized Hough
transforms accumulate votes for image-model transformations
in transformation histograms by processing the entire scene.
Then these histograms have to be examined to accomplish
recognition. Geometric hashing alleviates the need for expen-
sive histograms and histogram analysis. The invariant rela-
tions, computed off-line and stored in lookup tables, are highly
redundant and are exploited during recognition. (We note here
that several other, somewhat different algorithms, such as those
described in [20] and [21], are also called the generalized
Hough transform; since these transforms do not use lookup
tables, we do not consider these algorithms in this paper.)

Other important studies of these two sets of algorithms can
be found in [22]-[24] where a quantitative analysis of the
effect of noise on the Hough transform and geometric hashing
is given. Though the general conclusion of these studies is
that the performance of both of these techniques degrades
substantially even with “moderate” amounts of noise, no direct
comparison between the techniques is made.

0018-9472/94$04.00 © 1994 IEEE

HECKER AND BOLLE: ON GEOMETRIC HASHING AND THE GENERALIZED HOUGH TRANSFORM

The major conclusions of our study are as follows:

+ The generalized Hough transform and geometric hashing
use a similar mode! representation scheme. The repre-
sentation is created off-line, before any recognition is
attempted. Although it requires time and space to create
and maintain, it supports faster recognition.

« Some of the early curve matching algorithms of geo-

metric hashing use the generalized Hough approach for
object recognition. Evidence for matches among model
and scene features is accumulated in histograms. High
peaks identify models that match scene objects and their
associated transformations.
The geometric hashing algorithms in this group are the
2-D and 3-D curve matching algorithms for the case of
rotations and translations [5]-[7]. We denote this group
by Curve geometric hashing.

e Most of the geometric hashing algorithms have an ap-
proach to recognition which is very different from the
generalized Hough approach. The geometric hashing al-
gorithms in this category consist of an iterative scheme,
in which specially chosen subsets of scene features are
matched at each iteration step. These matches produce a
few candidate models that are either refined or rejected
in a verifying step of the iteration. The most important
issue turns out to be the method for choosing the subsets
of features. If done “correctly” the need for the costly
histograms and histogram analysis is totally eliminated.
This group of geometric hashing algorithms includes all
the *basis’’ algorithms, namely, point and line algorithms
[8}-[10], convex and concave affine Curve matching
[10]. We denote this group by the name Basis geometric
hashing.

The rest of this paper is organized as follows: Sections Il and
III review geometric hashing and the generalized Hough trans-
form. Section IV discusses the object representation scheme
common to both paradigms. Approaches to recognition are
presented in Section V. Section VI summarizes the results.

II. REVIEW: GEOMETRIC HASHING

The geometric hashing schemes are intended for 2-D and
3-D object recognition in cluttered scenes under various view-
ing assumptions, and for different sensor types. Objects are
modeled as sets of local features, some of which might be
occluded in the scene image. Recognition is defined as a
mapping between a subset of scene features and a subset
of model features for some model in the database. These
mappings are constrained to belong to a predefined set of
geometric transformations 7. The precise class of possible
transformations depends on knowledge and assumptions about
the sensor and object types, the camera and object configura-
tion, and possible geometric transformations between the two.
In all cases, the objects can only undergo rigid transformations
in world coordinates before sensing—hence, only rigid objects
are considered.

We next describe the two categories, basis geometric hash-
ing and curve geometric hashing. The adjectives, curve and
basis, shall be omitted whenever the meaning is clear.

1329

A. Curve Geometric Hashing

Geometric hashing evolved from an algorithm due to
Schwartz and Sharir [25] for boundary curve matching.
This algorithm solved the curve matching problem under
the restrictive assumption that one curve to be matched is a
proper subcurve of the other. More specifically, given two
curves such that one is a proper subcurve of the other, the
Schwartz-Sharir algorithm finds the subcurve location by
finding the best fit of the subcurve to the longer curve ina
least-squares sense. Although fast and robust, if this algorithm
is to be applied for recognizing objects, one has to segment
the boundary of a scene curve into subcurves belonging to
different objects in the scene. One way to do the segmentation
is to use the heuristic that overlapping parts create sharp
concavities [26]. Sharp concavities are assumed to be the
breakpoints between subcurves belonging to different objects.
Recognition of objects is achieved by matching every scene
subcurve with every stored model curve.

Kalvin ef al. [26] introduce a screening step for the original
algorithm to handle cases where the database of objects is
large. They define local, rotation and translation invariant
object characteristics, termed footprints. These are computed
from arc length versus turning-angle graphs of curves, which
are invariant curvature-based curve descriptions and used to
index into the model database. The lookup table, containing
model identifiers, is created in a preprocessing step. Recog-
nition is performed in two steps. First, model candidates
are generated (for verification and localization) by using the
footprints of the scene subcurve to index the lookup table and
extract model curves. Second, the candidates are verified and
localized by using a least squares algorithm. This indexing
scheme was called geometric hashing.

The indexing scheme did not solve the problem that scene
curves had to be segmented prior to recognition. To overcome
this difficulty, Hong et al. [7] propose to include in the lookup
table, in addition to model identifiers, the location of the
footprint along the curve. In the preprocessing step, curve
sample points and model identifiers are recorded in the lookup
table as follows: curve sample point ¢ of model M whose
footprint is f, is recorded in the cell whose address is f.
(When the range of footprints is too large to give each element
a unique address, as is usually the case, one maps a range of
footprints into each table cell.)

Recognition using footprints is performed in two steps. In
the first step, for each model in the curve database, a one-
dimensional accumulator array of possible relative shifts is
initialized. In these histograms, votes for relative shifts of
scene curves with respect to model curves are accumulated.
The footprint of each scene curve point is used to index the
lookup table and extract the pairs (model, sample point). For
each such pair, a vote is cast for a curve model and the relative
shift of the scene curve with respect to the model curve. For
example, if scene curve point 7 has the same footprint as
sample point j on model M, then accumulator cell 7 — i for
model M is incremented. In the second step of recognition,
peaks in the histograms are detected. If histogram M contains
a peak at location k, this indicates that a piece of scene curve

1330

corresponds to model M and the scene curve starts at location
k of the model curve. These histogram peaks are verified and
localized.

In a similar approach, Wolfson [5] sorts the footprints
for fast indexing instead of storing them in a lookup table.
Kishon [6] extends these ideas to three-dimensional curves
and experiments with a number of different footprints; he also
defines the footprints in a multiresolution fashion. Theoretical
results regarding different footprints can be found in [7].

B. Basis Geometric Hashing

In the basis geometric hashing paradigm objects are repre-
sented as sets of local features. Typical features include points
and line segments. Geometric constraints between these local
features in the models are encoded in a lookup table. This
is done in a preprocessing stage. The geometric constraints
are invariant under the set 7 and are therefore useful for
fast indexing during recognition. Coupled with each invariant
constraint is a minimal set of local features, called a basis
set, which serves to define a unique mapping between scene
features and model features. These bases are stored in a lookup
table whose addresses are the invariant constraints.

We first describe how the technique applies to 2-D affine
transformations, then discuss how it applies to other transfor-
mations. In introducing the paradigm it is easiest to describe
objects as a set of points represented in some coordinate
system. It is an unspecified issue as to how to extract these
points. Some possibilities for extending the paradigm to other
features, such as lines or line segments, are discussed in [4]
and in [27]; in [27] lines are treated as points in dual space.

Applied to Affine Transformations A 2-D affine transforma-
tion is defined by

T(x)=Ax+b

where A is a nonsingular 2 by 2 matrix, and b is a 2-D vector.
The affine transformation is a good approximation to the image
plane transformation that occurs when a flat object, which is
relatively far from the camera, is translated and rotated in 3-D
space.

The six parameters of the affine transformation are uniquely
defined by the correspondence of two ordered triplets of non-
collinear points. In addition, an ordered triplet can be used to
represent any fourth point in an affine invariant manner. Let
X1, X2, and X3 be three noncollinear points and x any fourth
point in the plane. Since x; — x3 and Xz — X3 are linearly
independent, there exists unique £ and 7 such that

X — X3 = £(X1 — X3) + (X2 — X3)
Applying any affine transformation to x yields
T(x) = §(T(x1) — T(x3)) + n(T(x2) — T(x3)) + T(xa)

Thus T(x) has the same coordinates (£,7) with respect to
T(x1), T(x2), and T(x3) as x has with respect to x;, X2,
and x3 (see Fig. 1). Hence, we call any noncollinear triplet
an affine basis, and we call the coordinates (£,7) of x affine
coordinates.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 9, SEPTEMBER 1994

Fig. 1. Affine bases and coordinates: (a) X1, X2, and x3 form a basis. (b)
T(x1), T(xz2), and T(x3) form a basis in the perturbed image.

Picking the same basis in the model and scene, and repre-
senting all other points in their affine coordinates, provides
a method for determining the number of point matches.
Corresponding points will have the same coordinates with
respect to both reference frames. In addition, the parameters
of the transformation can be computed from the two bases. To
accomplish fast recognition, a model point is represented by its
affine coordinates in every affine model basis. In this way, to
recognize an object, it is enough to pick any basis in the scene
such that the three basis points all belong to one model, and
compare the resulting coordinates to the stored coordinates.

The previous observations lead to the following algorithm:

Preprocessing For each model object M represented by m
points, and for each triplet of noncollinear points b of M,

1) Compute the affine coordinates of all other m-3 points
in terms of basis b.

2) Store the basis b and model identifier M in a two-
dimensional lookup table indexed by the affine coor-
dinates. That is, for each pair of coordinates (&,7)
computed in step 1, add (b, M) to the lookup table
cell whose quantized range of coordinates includes (¢,)
This process is termed hashing and the table is called
a hash-table.

Recognition Given a scene represented by n points do the
following:
1) Choose a basis b° in the scene, and compute the coor-
dinates

{(‘fla 771)7 (527772)a “sey (én—ﬁl’ nn-S)}

of all other n — 3 scene points with respect to this basis.
2) Retrieve from the hash-table all pairs (b, M) of bases
and models that are stored in cells whose coordinates
are close to (&;,m;) for any . The acceptable distance
in coordinate values depends upon the noise level.
3) Rank the pairs (b, M) based on the number of times they
had been retrieved from the hash-table.
4) For all those passing a threshold do:
(a) Compute the unique affine transformation that maps
the model basis to b°, the scene basis.
(b) Verify the match between the model points mapped
onto scene coordinates and the scene points, using
all available points.

5) If not all scene point have been identified jump to step 1.

HECKER AND BOLLE: ON GEOMETRIC HASHING AND THE GENERALIZED HOUGH TRANSFORM

The worst case running time of the recognition stage is of
order n* operations, assuming the verification step is of order
n and m is also of order n. But, for a successful recognition of
a model, it is enough to pick just one basis such that all three
points belong to the model. Therefore, the expected running
time is lower, and is largely dependent on the noise level in
the image [11].

Alternative Basis Sets Geometric hashing applies to a wide
variety of image plane or image space (in the case of 3-
D scene data) sets of geometric transformations 7. For all
classes of transformations the basic principles of preprocessing
and recognition are the same as for the case of the affine
transformations. The differences between the schemes for
different classes 7 are in the different basis sets that has to be
employed for each class of transformations. We list possible
basis sets for different 7s.

In the case of a world of 2-D objects the possible image
plane transformations are:

« Translations—a one point basis set.

+ Rotations—a one point basis set; or alternatively, a unit

vector basis set.

+ Translations and rotations—a two point basis set; or

alternatively, one point and one unit vector.

* Similarity transformations—a two point basis set.

o Affine transformations—a three point basis set (shown

above).

When objects are three-dimensional and both model data
and scene data are available in 3-D, the following transforma-
tions are possible:

+ Translations—a one point basis set.

» Rotations—a two point basis set; or alternatively, two

unit vectors.

« Translations and rotations—a three point basis set; or

alternatively, one point and two unit vectors.

o Similarity transformations—a three point basis set; or

alternatively, two points and one unit vector.

In the case that objects are three-dimensional, and model
data is available in 3-D form, yet scene data is only two-
dimensional, there is no clear extension of the geometric
hashing paradigm. This is due to the reduced dimension in
the scene space compared to the model space. A number of
approximations, including the singular 3-D affine transforma-
tion, correspondences of planes, and the tesselation of the
viewing sphere, have been suggested [10]. The tesselation of
the viewing sphere approach has also been tested with real
data.

III. REVIEW: THE GENERALIZED HOUGH TRANSFORM

A technique for recognition of arbitrary 2-D curves which
resembles the standard Hough transform [15] was introduced
by Ballard [12] and coined ‘the generalized Hough transform.’
The generalized Hough transform is intended for finding
the position of a 2-D model’s boundary in a noisy scene,
where the models are mapped to the scenc image by a
transformation composed of a translation, rotation and change
of scale. (A sample application would be searching for Lake
Michigan in an aerial photograph.) Like geometric hashing,

1331

Fig. 2. Shown in this figure are the tangent 6(x™) to the curve at model
point x™ and the reference vector r at the same point.

the generalized Hough transform is composed of an off-line
model preprocessing stage, and an on-line recognition step.
We first assume that the orientation and scale of the object
are fixed, so that the model will be translated in the image
scene relative to its position in the model image. In the
following description we shall use x to denote scene points,
to be distinguished from x™ when referring to model points.

A. Restricted to translations

The following preprocessing step is performed off-line:

1) For each point x™ on the model’s boundary (see Fig. 2)
compute §(x™), the angle of the curve tangent at x™
(or alternatively the gradient direction at x™.)

2) Pick an arbitrary reference point po (with model coordi-
nates x77*; in the scene this point is denoted xo, the point
to be looked for) and compute its relative position with
respect to all boundary points; that is, for each model
curve point ™ compute r = x§* —x™ (Fig. 2 illustrates
these vectors). Note: given any scene boundary point
x in the translated image and the reference vector r
computed for this point, the location of the reference
point po in the scene is given by Xo = X + .

3) Create a lookup table containing all pairings of tangent
angles with corresponding reference vectors,

{(0G™), (xg* —x™)}-

The table is indexed by discrete angles 6. Since 6 is
invariant under image plane translations, it serves as an
index into the table during the recognition stage, for
extracting reference vectors. This table is known as an
R-table [12].

The recognition stage resembles the standard Hough tech-
nique: the coordinates of the reference point po in the trans-
lated image plane (the scene) are the unknown parameters. An
accumulator array is created for a discretized set of possible
z and y scene coordinates of po. Now point x in the scene,
which may or may not be part of the model boundary, can use
its tangent angle 6(x) to index into the R-table, to extract those
reference vectors that have been paired with 6(x) (hopefully
only a few), to compute the coordinates of po in the scene,

1332

and to vote for them in the array. Thus, for the case of a fixed
orientation and scale of the model, the recognition step is as
follows:
1) Initialize a 2-D accumulator array .A(xo) of possible
reference point locations to zero.
2) For each scene edge point x, vote for possible locations
of po:
For each table entry r at index 6(x), increment accu-
mulator array cell

A(xo) — A(xo) +1,

where xg = x4+ r.
3) Maxima in A correspond to possible reference point
locations.
Having identified a few potential locations of model reference
point in the scene, one can then use them to map all the curve
points to the scene and verify the candidates one by one. When
one is looking for a number of pre-modeled objects (these
could be, for example Lake Michigan or Lake Superior or Lake
Ontario) each of the possible model objects can be searched
for independently, in a sequential manner, but this search could
also be performed in parallel by creating an accumulator array
for each of these known models and repeating the voting steps,
once for every scene point, for each model.

B. Similarity Transformations

Rotation and scaling are incorporated into the generalized
Hough transform by expanding the accumulator array and
creating multiple R-tables for each model: one table for
each possible quantized rotation angle and scaling factor. In
fact, the additional tables need not be created explicitly; a
simple computation during the recognition stage derives an
entry in any rotated and scaled table from a corresponding
entry in the single R-table which is actually stored (so that
each stored value generates multiple votes). In describing
this computation it is simpler to use the polar coordinates of
reference vectors, i.e., r = (r,a). Recognition in the case of
similarity transformations takes the following form:

1) Initialize 4-D accumulator array .A(xg, 3, s) of possible
scene locations xg of the reference point po for any
given rotation angle 3 and scaling factor s of the model.

2) For each scene edge point x, and for each possible
quantized scaling factor s and rotation angle § of the
model, vote for possible locations of po. In more detail,
For each table entry r = (r,) at index 8(x) — 3,
increment accumulator array cell

.A(X(),S,ﬂ) — .A(X(), Saﬂ) + 17

where Xg = x + q, and the rotated and scaled reference
vector q is given in polar coordinates by,
and

lal = sr angle(q) = a+ 43,

where angle is the function that returns the angle of its
vector argument. Each (s, 3) pair casts a set of votes for
the model scaled by s and rotated by 3

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 9, SEPTEMBER 1994

3) Maxima in array A correspond to possible reference
point locations for a possible rotation and scale factor
of the model.

We would like to make one comment on the name ‘gen-
eralized Hough transform’ chosen for this method that we
have described, showing why the standard Hough transform
is a special case of it. Analytical curves, of the type that the
standard hough deals with, can be parametrized by coordinate
system transformation parameters—translations in zo and yo,
rotation 3, and scaling factors s. For example, a circle equation
is given by

(z - 20)? + (y —)’ = %,

and we can choose its center as the reference point. Given the
gradient direction 6 at point x on the circle and a scale factor
s, the possible location of the reference point (zo, %) is X +1
where r is given in polar form by

|r| =s and angle(r) =0.

The R-table is implicit (no need to create it) because the
reference vector at index @ is just a unit vector in the direction
of the gradient 6.

Objects composed of subparts can be recognized by com-
bining the R-tables of each subpart into one global R-table for
the whole object. Another extension to the basic generalized
Hough transform is to use more complex strategies for in-
crementing the accumulator array, other than incrementing by
unity. These two issues are discussed in [12]. An extension of
the scheme to three-dimensional objects is described in [14].

IV. OBJECT REPRESENTATION

We examine in greater detail the object representations used
by geometric hashing and the generalized Hough transform.
The common central idea in the object representation schemes
is to identify object features that contain both viewpoint
independent parameters, which we term indices, and viewpoint
dependent parameters, termed references. Both indices and
references convey geometric properties of a feature. Indices
contain viewpoint independent properties of a feature and are
used to detect instances of a model in the scene; reference
parameters, on the other hand, depend on the viewpoint and
are used to compute the transformations of the scene object
with respect to the models.

For example, consider recognizing polygons in line draw-
ings and using the line segments that form the edges as
features. If the scale of the objects is fixed, then the length of a
line segment may serve as an index, and its two endpoints may
serve as a reference. The internal representation of a polygon
is a pairing of the length of each line segment with the two
endpoints. This information is saved in a lookup table indexed
by length. During recognition, line segments in the scene can
be matched with the model line segments by using their lengths
which are invariant under translations and rotations of the
model. The model endpoints are aligned with the scene points
to compute the pose of the object in the scene. By pose we
mean both the orientation and location parameters.

HECKER AND BOLLE: ON GEOMETRIC HASHING AND THE GENERALIZED HOUGH TRANSFORM

A. Indices and References

Geometric hashing and the generalized Hough transform
have a common object representation scheme. Let 7 denote
the set of possible mappings of a model’s coordinate frame
to an arbitrary scene coordinate frame. A mapping in Tisa
coordinate frame transformation. With increasing generality,
we have, as possible transformations: translations, rigid body
transformations, similarity transformations, and affine transfor-
mations. Based on the allowed set of transformations 7 and
on the set of world objects, features for object representation
are selected that contain two types of parameters—indexing
parameters and referencing parameters. These features are
extracted both in the model and in the scene and are used
to identify instances of models in the scene. In addition, they
are used to compute the location of the model instances in
the scene.

Given a feature ¢, a reference R(¢) is a viewpoint depen-
dent parameter (vector) of a feature. If a feature is viewed
from two different viewpoints, the reference parameters of
the two instances of the feature can be used to compute the
viewpoint transformation T € 7. This transformation is not
necessarily unique; uniqueness depends on 7 and the reference
parameters. In practice, reference parameters are chosen to
provide a unique transformation. In that case, the reference
parameter provides a basis for the transformation.

Indices Z(¢) are mostly viewpoint independent parameters
of features ¢. They are used to identify instances of a feature
(and hence the object containing the feature) irrespective of the
choice of coordinate system. Thus, scene feature ¢s matches
model feature ¢, if these features are of the same type and
have equal indices.

Let us look how this terminology applies to the generalized
Hough transform for the case that 7 is the group of transla-
tions. To model an object, points with a small neighborhood
on an object’s smooth boundary are chosen as point features
¢ for recognition. Some translation-invariant property of these
features, Z(¢), is used as index parameter. This can be, for
example, the tangent t to the curve at point feature ¢ as
the tangent does not change when the curve is translated. As
reference parameters R{@$) the coordinates X of the features
[i.e.. X = (z,y) or (z,y, 2) for 2-D or 3-D cases, respectively]
can be used. In the model, these coordinates are expressed
in an object-centered coordinate system. A pairing between
a model feature ¢ and a scene feature ¢s determines the
translation T between the model and scene coordinate frames.
This translation is directly computed from X ¢ and Xs, the
scene and model reference parameters, i.e., T = Xy —Xs €
T The index t is used to select feature pairings.

In the above example, a unique translation T is computed,
but, if 7 includes rotations as well as translations, infinitely
many transformations between the two points are possible.
Still, this set of transformations is useful since it constitutes
only a subset of all possible transformations T. This is
meaningful if the space of transformations is finitely quantized.

Parameters which are not totally viewpoint independent may
also be used as indices. For example, if 7 is the group of
translations and rotations, the tangent t at model point-feature

1333

¢ can be used once more as an index, albeit a less suitable one
than where T is only the group of translations. When rotations
are included in 7' the model has to be rotated to each possible
quantized angle and each such model view treated as a separate
model [12]. Therefore, such indices are used rarely, only when
no viewpoint independent parameters have been found.

An object is represented by a set of pairs {(index,
reference)}; each pair represents a feature ¢ of the object. The
indices are provided for fast identification of features, while the
references serve to find the viewpoint transformation (Fig. 3).
Typically, these lists are stored in a lookup table addressed
by the indices. For example, let {¢:} denote arbitrary points
on the boundary of an object. Let X; denote the coordinates
of ¢;, t; the tangent at ¢;, so

Xi = R(¢l) and t,‘ = I(¢,)

Then the set of pairs {(t;, X;)} is stored in a table whose
addresses are quantized tangent vectors t; and whose contents
are coordinates X;. This set of pairs constitutes the represen-
tation (model) of an object. If the database includes more than
one model, a model identifier is stored with every (t;, X;) pair.

In this case, the object-model catalogue is a set of triplets
{(Z(¢:), R(i), Mj)},

where feature ¢; belongs to model M;.

B. Tuples of Features

At times, the available feature types in an object are not
suitable for an index/reference representation. This happens
when, for a given set of allowed transformations T, the feature
types do not contain viewpoint-invariant parameters and/or
suitable reference parameters. For example, a line segment
is not a suitable feature for the case where 7 is the group
of similarity transformations since scaling is allowed. That is,
a line segment does not contain any geometric information
that is invariant under similarity transformations 7. Hence, no
suitable index is available. On the other hand, in this particular
example, suitable reference parameters exist—the coordinates
of the two endpoints.

Geometric hashing solves this problem of “weak” features
in a systematic fashion by forming fuples & of basic features ¢.
Each tuple is represented by index and reference parameters.
To see why tuples provide the necessary information, consider
the following example. Assume that the basic features are point
features ¢, and that 7 is the group of similarity transformations
in two-space. New features @ are defined by using triplets of
point features. Geometrically, a triplet constitutes a triangle.
The angles of a triangle are invariant under similarity trans-
formations and hence can be used as indices. The coordinates
of the vertices serve as references. In fact, it is easy to see that
two angles and the corresponding vertices suffice as index and
reference parameters, respectively.

In a similar manner, basic point-features can be grouped
into tuples of size two, four, and five points, depending on the
group of transformations 7 that is allowed. For translations
in two-space, tuples of size two (pairs) are used. These pairs
define features which contain a natural index parameter-the

1334

[EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 9, SEPTEMBER 1994

(a) Model

(b) Scene

)

R(¢s)

- - —— - =
-~

Fig. 3.

distance between the point features; the coordinates of one of
the points can be used as the reference parameter. For affine
transformations quadruples are used. An algebraic approach
[8]-[10] (rather than the geometric approach described here)
yields natural index and reference parameter for any size tuple
feature ®.

This grouping technique applies not only to points, but also
to lines, line segments, circles, and in fact to arbitrary features
as basic features ¢. The complex geometric structures that are
formed by such tuples contain more information for invariant
indexing and referencing.

Sharing a Reference Parameter An important characteris-
tic of a particular grouping technique is whether reference
parameters are shared by multiple features, i.e., if many
features have identical references. As an example, consider
once more features that are triplets of point features ¢,
® = (¢, P2, ¢3), where every possible triplet forms a distinct
feature. Then for 7 the group of similarity transformations, the
coordinates of ¢; and ¢ may serve as the reference parameter,
ie.,

R(®) = (R(¢1), R(¢2)),

with R(#) the coordinates of point feature ¢. If an object
contains n feature points then the n — 2 triplet-features,

{(¢1,¢2,0:)| 3 <i < n},

all have the same reference parameters. Also, since ¢; and
¢ are arbitrary features, each reference is shared by n — 2
features. Fig. 4 shows four tuple features, ®;,...,®4, all
having an identical reference parameter—the coordinates of
the two points (¢1, ¢2).

Index and reference parameters of feature ¢ both in the model and in the scene.

$2
'|:~~ -Q
4
’, " T —‘\“,,I\\
- \ -~ N
P 1 N B | Q\
‘<) -~ P 1 ~
”, ~
7Py TN ’ TR
4 - \ ’ - ~
- P] INE4 ' S~ ~
’ - i be ' S~
R &, N RN
P 1 2, \ & 1 §O
O.- ' Pt AN I
(s N 1 ¢
¢3 1,7 ! 6
P4 s

Fig. 4. Four features sharing one reference.

An example of tuple features that do not have common
references are feature pairs, {(¢;,#;)} The distance between
the feature points serves as the index parameter and the
coordinates of both feature points serve as the reference
parameter; hence, each feature pair ® = (¢, ¢;) has a distinct
reference. It is important to note that in both these examples,
the reference parameters are identical—coordinates of two
points. However, in the latter case, each reference is associated
with one feature, while for the former, each reference is
associated with n — 2 features.

In geometric hashing, feature tuples ® are created in such
a way that many of the tuples ® share an identical reference.
This results in multiple indices for each reference, which are
capable of generating strong evidence for a particular model
feature candidate (Section V). Thus, although both examples
of grouping features in the previous paragraph are suitable for

HECKER AND BOLLE: ON GEOMETRIC HASHING AND THE GENERALIZED HOUGH TRANSFORM

representing objects using indices and references, when 7T is
the group of translations and rotations, only the first can be
used by geometric hashing. Both may be used by generalized
Hough algorithms.

C. Examples of Features, Indices and References

Ballard, who introduced the index/reference object-repre-
sentation technique, matches object boundaries (2-D curves)
[12]-[13], as described earlier; points along the curve are
used as point features ¢. Index parameters are approximated
gradient directions at these points, and reference parameters
are the coordinates of the points. This is most suitable for
translations. If rotations and scaling are also considered, the
object model has to be rotated and scaled for all possible
angles and scale factors; and each resulting instance treated as
a separate model. This is a very inefficient process, both from
a storage and from a computational point of view. Because of
the large number of object models, recognition performance
degrades.

Hong and Wolfson [7] introduce a better representation for
2-D curve segments. It is used for matching curve segments
detected in an image to a library of model curves. Here, 7 is
the group of 2-D rigid body transformations. Features ¢ are
again curve points (and their neighborhoods). The indices are
various translation and rotational invariant parameters, such
as the curvature x at point feature ¢. The reference parameter
s for point feature ¢ on a curve segment is the arc length
from the starting point of the segment to the feature location.
Matching two curve feature points is based on similar indices
and yields the location of the starting point of the scene curve
on the model curve (expressed in arc length). The Euclidean
transformation T between the model curve and scene curve
is computed from the translation along the arc length in a
straightforward way. Kishon and Wolfson {6} extend these
techniques to 3-D curves.

A representation of 2-D curves, for 7 affine transformations,
is available in [9]. A feature ¢ is selected to be a subcurve.
The index Z(¢) is the parameterized shape of the normalized
subcurve (normalized such that the shape parameters are affine
invariant). The reference R(¢) is the triplet of curve points
which consists of the two endpoints of the subcurve and the
point furthest away from the line segment connecting the
endpoints. Since every subcurve is a feature, the number of
features is very large. This number can be much reduced if
the objects contain concavities. Then only the subcurves that
form the concavities are considered as features.

Lamdan et al. [8]-[10] extract (about 15-20) point features
¢ from more complicated objects and use the above described
grouping technique to represent these objects. This is what we
called in our review section ‘basis geometric hashing’. The
size of the feature tuples ® that they form depends on 7. The
features ¢ can also be lines, line segments, etc.

Polygons can be represented with the grouping technique
by treating each vertex as a point feature ¢. A reduction in
the number of tuple features ® is possible. Only those tuples
that contain an edge, i.e., at least two of the tuple points are
connected by an edge of the polygon, are considered as fea-

1335

tures. This significantly reduces the number of features & that
represent a polygon; hence, storage and search requirements
are reduced. Yet, the number of features having a common
reference is not reduced while the number of references is
reduced. This is an important issue in iteratively selecting
scene features (Section V).

A slight variant of an early (generalized Hough) example
of modeling 2-D and 3-D polytopes [14] is the following: the
edges of the polytope are the features ¢; the edge length is the
index parameter; and the coordinates of one of two vertices
together with the edge normal serve as the reference. This
representation is suitable for recognition under translations and
rotations. Of course, obscured edges in the scene will then
produce false indices.

V. APPROACHES TO RECOGNITION

An object usually contains many features. Each feature
can be used to find the viewing transformation, or at least
to constrain the set of possible transformations 7 to some
subset 7’. The question arises as to how many features to
match. Computing the viewing transformation from a match
of only one feature will possibly yield too many candidate
transformations. On the other hand, integrating information
from various matches requires additional capabilities. The
generalized Hough and basis geometric hashing are at opposite
extremes regarding this issue. Generalized Hough transforms
match all scene features and then try to find clusters among
the transformations associated with these matches. Basis geo-
metric hashing iteratively matches only small subsets of scene
features. The estimate of the transformation for a given match
is either improved, or the match is abandoned in a veri-
fying step. The key issue in this approach is that if the
subsets of features are chosen “correctly,” no clustering is
required.

The next section discusses the approach to recognition com-
mon to the generalized Hough transform and curve geometric
hashing. Following that, we discuss the contributions that basis
geometric hashing offers to recognition.

A. Transform Clustering

The generalized Hough transform and curve geometric
hashing have a similar approach to object recognition. Object
recognition consists of two stages. In the first stage, every
single scene feature ¢s is matched with all model features
& that possess similar invariant characteristics (indices). The
output of this stage is a set of pairs {(M,T)}. Here M
denotes a model that contains feature ¢4, which is matched
to a scene feature ¢s, and T denotes the transformation that
maps ¢ onto ¢s. In Fig. 5, T, the transformation that maps
b, 10 ps, is computed from R, and R;, the scene and model
reference parameters.

The second stage assigns a meaning to the output of the first
stage. For each model M that has at least one feature ¢4 that
is matched to a scene feature ¢s, the second stage searches
for large clusters of transformations T' that map features of
M onto scene features. The data structures that are used to

1336

scene

Fig. 5. Matching scene and model features.

store and detect these clusters are called parameter spaces.
These are histograms of transformations T—one histogram
per model M in the object model database. Hence, the first
stage amounts to building these histograms and the second
stage to finding peaks in the histograms.

The matching process in the first stage of recognition
works as follows. Scene feature ¢s is paired with every
model feature ¢rq such that I(¢s) = Z(¢a). This can
be achieved very quickly because model features are stored
in a lookup table with the index parameters as addresses.
For every pair (¢s,Pr), a transformation T that maps
the model feature ¢4 onto scene feature ¢s is computed.
This transformation is computed directly from the respective
reference parameters R(¢). This information is accumulated
in the histogram containing various transformations associated
with model M. ‘

B. Iterating over Feature Subsets

Regarded at the level of individual feature matching, basis
geometric hashing and the generalized Hough transform (and
curve geometric hashing, of course!) are actually equivalent.
First, a scene feature ¢ is chosen, and the index and reference
parameters are computed. Next, by indexing into the lookup
table, the index parameter is used to extract those models M
that have similar features ¢ . In turn, each model feature
reference is paired with the scene reference. From each such
pair, the transformation T that maps the model onto its
instance in the scene is computed.

.(MlJ.Tm) .

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 9, SEPTEMBER 1994

The important difference between the two schemes is found
in the global strategy of selecting scene features. The gen-
eralized Hough transform matches every scene feature ¢s in
one step, leaving it up to the analysis of the histogram to
make sense out of all the matches. Basis geometric hashing
iteratively matches subsets of scene features ®s. Each subset
is chosen such that the resulting candidates (M, T) can be
analyzed without the use of grouping techniques. There is
no need to define a distance measure on 7. Clustering in
high-dimensional space is often troublesome [22]; additionally,
clustering implicitly defines a distance measure, which usually
is meaningless.

Selecting Feature Subsets In this section, we assume the
group of transformations 7 is a one-to-one mapping between
references. All the above mentioned transformations satisfy
this condition.

We describe two methods for selecting subsets of scene
features ¢s. The simplest method is to select singletons; at
each step in the iteration process, one scene feature ¢s is
chosen. This feature is matched with model features ¢aq
of equal index and the mapping transformations computed
from the respective references. The number of generated pairs
(M, T) is a function of the index type, the noise level, and
the popularity of the scene feature ¢s in the object-model
database.

Transformations for a particular model M, are mutually
inconsistent, because two features belonging to one model can-
not map onto one scene feature. That is, one scene feature ¢s
cannot instantiate the model M more than once. Therefore,

HECKER AND BOLLE: ON GEOMETRIC HASHING AND THE GENERALIZED HOUGH TRANSFORM

transformation histograms are unnecessary, and each (M, T)
must be verified independently. This technique is used for
affine (concave and convex) curve matching [91.

The second method of selecting feature subsets, used by ‘ba-
sis geometric hashing’, is employed when features are tuples
® formed, as previously discussed, by grouping basic features
$. In this case, multiple features ¢ have identical reference
parameters (see Section IV.B). At each step of the iterative
recognition process, exactly one scene reference parameter is
chosen from among all unmatched reference parameters. This
then defines a set of features, namely, those scene features that
contain the one selected reference parameter. This feature set
is matched with the object-model features.

In general, a scene reference can only be associated with
at most one reference in each model. Therefore, for each
model, a scene reference can generate at most one correct
transformation ‘T that maps this particular model onto the
scene. So, if after an iteration among the model/transformation
candidates we have both

(M07T1) and (M07T2)a

with Ty # To, then it cannot be the case that both T and T5
are correct transformations of model M. Therefore, unequal
transformations surely do not represent noisy instances of
the same transformation. That is, there is no need for a
distance measure between transformations. The exceptions to
this correspond to different instances of the same object in a
scene that share an identical scene reference. For this to be
the case, the transformation between these instances is large
(e. g., a 180 degree rotation around some point in the image),
and hence can be readily detected.

Each iteration generates a multiset {(M;,T;)} of can-
didates. These candidates can be ordered according to the
number of times they appear in the set, producing the list

(Mi1 ’ le)a (Mh) Tj2)5 v (Min s T))

The number of times a particular candidate appears in the list
can be thought of as scene features agreeing to this model
candidate—called “voting” in geometric hashing terminology.
Verification proceeds in the order of this list. The highest
confidence candidates, typically candidates that correspond to
objects in the scene with many features, are verified first.
Heuristics can be used to stop verification of the list [8].
This hypotheses/verification cycle is continued until the scene
is completely identified, including scene features labeled as
‘unknown’. For verification, easily accessible individual object
representations are used.

Geometric hashing uses groupings of basic features ¢ such
that many tuple features @ share the same reference. Let
us assume that a reference is a subtuple containing basic
features. If a scene reference corresponds to a number of
scene features that all belong to the same object in the scene,
then many of the scene features that share this reference
will generate the same candidate (M;,T;). This has the
effect that per iteration few candidates will be generated with

1337

high confidence. Consequently, the scene is analyzed more
efficiently since relatively little processing time is spent on
verification of low-confidence candidates.

The major implication of the subset selection methods
is that there is no need for transformation histograms and
cumbersome histogram analysis. This is a pronounced differ-
ence between geometric hashing and the generalized Hough
transform.

VI. CONCLUSION

We observe that the generalized Hough transform can be
divided into two classes. The first class precomputes geometric
relations in the models and stores them in lookup tables. The
second class does not perform any preprocessing.

Comparing the first class of generalized Hough algorithms
to geometric hashing yields the following observations:

« Both paradigms use similar object representation sch-
emes. This is of key importance since the success of
these schemes is very much due to the intricate model
representation.

« Some geometric hashing algorithms (the early curve
matching algorithms) accumulate evidence for all matches
in a parameter space, representing transformations and
search for clusters in this space. This is identical to the
generalized Hough approach.]

« Most geometric hashing algorithms iteratively match a
small subset of scene features until a verification step
succeeds. The important implication of this approach is
that the clustering step, which is a central but weak
element of generalized Hough algorithms, can be totally
avoided.

« Geometric hashing introduces a systematic technique for
grouping of simple features to obtain features that contain
enough information for matching scene features to model
features and computing transformations (object positions)
from these matches.

REFERENCES

[1] T. O. Binford, “Survey of model-based image analysis systems.” The
Int. Journal of Robotics Research, vol. 1, no. 1, pp. 18-64, Spring 1982.

2] P. J. Besl and R. C. Jain, “Three-dimensional object recognition,”
Computing Surveys, vol. 17, no. 1, pp. 75-145, Mar. 1985.

3] R. T. Chin and C. R. Dyer, “Model-based recognition in robot vision,”
ACM Computing Surveys, vol. 18, no. 1, pp. 67-108, Mar. 1986.

[4] Y. Lamdan, “Object recognition by geometric hashing,” Ph.D. Thesis,
New York University, Aug. 1989.

[5] H. J. Wolfson, “On curve matching,” IEEE Trans. on Patt. Anal. and
Mach. Intell., vol. 12, no. 5, pp. 483-489, 1990.

[6] E. Kishon and H. J. Wolfson, “3-d curve matching,” In Proc. AAAI

Workshop on Spatial Reasoning and Multisensor Fusion, pp. 250-261,

Oct. 1987.

J. Hong and H. J. Wolfson, “An improved model-based matching method

using footprints,” In Proc. 9th Int. Conf. on Pattern Recognition, Nov.

1988.

[8] Y. Lamdan, J. T. Schwartz and H. J. Wolfson, “On recognition of 3-D
objects from 2-D images,” In Proc. IEEE Int. Conf. on Robotics and
Automation, pp. 1407-1413, Apr. 1988.

[9] Y. Lamdan, J. T. Schwartz and H. J. Wolfson, “Object recognition by

affine invariant matching,” In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, pp. 335-344, Jun. 1988.

Y. Lamdan and H. J. Wolfson, “Geometric hashing: A general and

efficient model-based recognition scheme,” In Proc. Second Int. Conf.

on Computer Vision, pp. 238-249, Dec. 1988.

[7

—

[10]

1338

1]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS. VOL. 24, NO. 9. SEPTEMBER 1994

Y. Lamdan and H. J. Wolfson. “On the error analysis of geometric
hashing,” Technical Report 467, Courant Institute of Mathematical
Sciences, New York University, Oct. 1989.

D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111122, 1981.

D. H. Ballard and C. M. Brown, Computer Vision. Prentice-Hall,
Englewood Cliffs, NJ, 1982.

D. H. Ballard and D. Sabbah, “Viewer independent shape recognition,”
IEEE Trans. on Pattern Analysis and Machine Intell., vol. 5, no. 6, pp.
653-660, Nov. 1983.

P. V. C. Hough. Methods and Means for Recognizing Complex Patterns,
U.S. Patent 3069654, Dec. 1962.

R. O. Duda and P. E. Hart, “Use of the Hough transform to detect lines
and curves in pictures,” Comm. of the CAM, vol. 15, no. 1, pp. 11-15,
Jan. 1972.

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
John Wiley & Sons, New York, 1973.

C. Kimme, D. H. Ballard and J. Sklansky, “Finding circles by an array
of accumulators,” Comm. of the ACM, vol. 18, no. 2, pp. 120-122, Feb.
1975.

J. Illingworth and J. Kittler, “A survey of the Hough transform,”
Computer Vision, Graphics, and Image Processing, vol. 44, pp. 87-116.
P. M. Merlin and D. J. Farber, “A parallel mechanism for detecting
curves in pictures,” IEEE Trans. on Computers, vol. 24, no. 1. pp.
96-98, Jan. 1975.

G. S. Stockman, “Three-dimensional pose computations from multiple
views,” In E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition
in Practice II, pp. 233-242. North-Holland, Amsterdam, 1986.

W. E. L. Grimson and D. P. Huttenlocher, “On the sensitivity of the
Hough transform for object recognition,” In Proc. Second Int. Conf. on
Computer Vision, pp. 700-706, Dec. 1988.

W. E. L. Grimson and D. P. Huttenlocher, “On the sensitivity of
geometric hashing,” In Proc. 3rd Int. Conf. on Comp. Vision, Dec. 1990.
M. Costa, R. M. Haralick and L. G. Shapiro, “Optimal affine-invariant
point matching,” In Proc. 6th Israel Conf. on Al, pp. 35-61, 1990.

J. T. Schartz and M. Sharir, “Identification of partially obscured objects
in two dimensions by matching of noisy characteristic curves,” The Int.
Journal of Robotics Research, vol. 6, no. 2, pp. 29-44, 1987.

A. Kalvin, E. Schonberg, J. T. Schartz and M. Sharir. “Two dimensional
model based boundary matching using footprints,” The Int. Journal of
Robotics Research, vol. 5, 4, pp. 38-55, 1988.

Y. C. Hecker and R. M. Bolle, “Invariant feature matching in parameter
space with applications to line features,” In Proc. Geometric Methods
in Computer Vision, SPIE 36 Annual Symposium, 1991,

Yaron C. Hecker is a Ph.D. candidate in computer
science at the Courant Institute of Mathematical
sciences at New York University. He received the
B.S. degree in mathematics and computer science
from the Hebrew University, Jerusalem, Israel. in
1986, and the M.S. degree in computer science
from NYU in 1989. From 1989 to 1991 he per-
formed research in computer vision at the IBM
T.J. Watson Research Center in Yorktown Heights,
NY. His research interests include various aspects
of multimedia systems: computer graphics and user
interfaces, computer vision and image processing.

Ruud M. Bolle (§°82-M’84-SM’89) was born in
Voorburg, The Netherlands. He received the Bache-
lor’s Degrec in Analog Electronics in 1977 and the
Master’s Degree in Electrical Engineering in 1980,
both from Delft University of Technology. Delft.
The Netherlands. In 1983 he received the Master’s
Degrec in Applied Mathematics and in 1984 the
Ph.D. in Electrical Engineering from Brown Univer-
sity, Providence, RI. In 1984 he became a research
staff member at the IBM T.J. Watson Research
Center in the Artificial Intelligence Department of
the Computer Science Department. In 1988 he became manager of the newly-
formed Exploratory Computer Vision Group; since September, 1990 he has
been manager, Computer Vision and Mobile Robotics.

Currently, his research interests are focused on object modeling and
matching for image database browsing, active and real-time vision, and
computer vision for user interfaces.

He is a Senior Member of the IEEE, and associate editor of IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE and the
Journal of Mathematical Imaging and Vision. -

